Finite Element Analysis of Precision Hard Cutting Using Different Cutting Edge Preparation

2007 ◽  
Vol 10-12 ◽  
pp. 353-358 ◽  
Author(s):  
Yu Wang ◽  
Fu Gang Yan ◽  
P. Wang ◽  
Cai Xu Yue ◽  
Xian Li Liu

Machining hardened steels has become an important manufacturing process, particularly in the automotive and bearing industries. Hardened steel GCr15 with its harness between HRC50 and HRC65 is one kind of more difficult machining material. Abrasive processes such as grinding have typically been required to machine hardened steels, but advances in machine tools and a new cutting material of polycrystalline cubic boron nitride (PCBN) have allowed hard turning on modern lathes to seems to gain an ever increasing industrial acceptance as an economically and environmentally friendly alternative to many grinding applications. In this paper, based on large deformation theory and updated Lagrangian procedure, a coupled thermo-mechanical plane strain orthogonal precision cutting model with general finite element analysis software is developed to the influence of cutting edge preparation on the cutting of GCr15 with PCBN tool, such as cutting forces, shear angle, and cutting temperature. The three major designs of cutting edge preparation are used on most commercial cutting inserts: a) sharp edge, b) honed edge, and c) chamfer edge. The friction between the tool and the chip is assumed to follow a shear model and the local adaptive remeshing technique is used for the formation of chip. The calculated principle cutting forces are compared with published data and found to be in good agreement. The simulation results can be used as a practical tool both by researchers and toolmakers to design new tools with rational tool edge and to optimize the cutting process.

2011 ◽  
Vol 52-54 ◽  
pp. 1147-1152
Author(s):  
Guang Guo Zhang ◽  
Wei Jiang ◽  
Hong Hua Zhang ◽  
Huan Wang

In the traditional designs of milling cutter, we cannot get the required accuracy of machining as there may be local deformation on the edges, even more the cutter can break down. Aiming at this situation, a finite-element model of straight pin milling cutter with helical tooth are built using Marc, a nonlinear finite-element analysis software, the different cutting forces of the milling cutter during the cutting process are analyzed and the cutting forces of the milling cutter at different parameters are studied. We get the stress, the strain and the temperature distribution of the milling cutter in different situation. Our work offer a theoretical basis of improving stress of the cutter, designing the structure of cutters reasonably and analyzing the cutter failure as well as a new method of analysis and calculation of the cutter life and strength.


2009 ◽  
Vol 407-408 ◽  
pp. 516-520
Author(s):  
Wei Wei Ming ◽  
Ming Chen

Austenitic stainless steels are extensively used in the areas with high corrosion. The high heat resistance and strength make them difficult-to-cut materials. The tool life in machining austenitic stainless steels is restricted by the high cutting force and temperature which induce the tool wear and edge chipped. To achieve tool edge strength and reduce the edge-related problems, tool edge preparation is applied by introducing the chamfered and honed edges. In the current paper, the effects of the cutting edge preparation in face milling of austenitic stainless steels were studied using statistical method. The output cutting parameters as cutting force, temperature were obtained by finite element analysis. The purpose for this research is to give guidance to the tool edge preparation for machining stainless steels.


2017 ◽  
Vol 261 ◽  
pp. 354-361 ◽  
Author(s):  
Martin Necpal ◽  
Peter Pokorný ◽  
Marcel Kuruc

The paper presents the simulation model of turning the process of C45 non-alloy steel with a tool made of carbide insert. A 3D final element model used a lagrangian incremental type and re-meshing chip separation criterion was experimentally verified by measure cutting forces using piezoelectric dynamometer. In addition, stresses and temperature in the tooltip were predicted and examine. This work could investigate failure the tooltip, which would be great interest to predict wear and damage of cutting tool.


2012 ◽  
Vol 548 ◽  
pp. 465-470
Author(s):  
Asaad A. Abdullah ◽  
Usama J. Naeem ◽  
Cai Hua Xiong

In recent years, applications have been proven finite-element method (FEM) in metal-cutting operations to be effective process in the study of cutting and chip formation. In this study, the simulation results are useful for both researchers and machine tool manufacturers for improving the design of cutting parameters. Finite-element analysis (FEA) that used in this study of simulation the cutting parameters and tool geometries effects on the force and temperature in turning AISI 1040. The simulation parameters that used in this study are cutting speed (75 - 300 m/min),feed rate (0.2 mm/rev), cut depth (0.75-1.5 mm), and rake angle (0-20 °). The results of cutting forces were (240 – 520 N), the temperature were (300-420 °C), and the heat rate (14202.3-83772.8 W/mm3) on the cutting edge. The simulation process also show that the increase of cutting speed leads to decrease in the cutting forces, while it has increasing in temperature, and heat rate. Also, the results show that the increase of cutting depth associated increase the cutting force only.


Sign in / Sign up

Export Citation Format

Share Document