scholarly journals The Effect of Specimen Dimension on the Results of the Split-hopkinson Tension Bar Testing

2017 ◽  
Vol 173 ◽  
pp. 608-614 ◽  
Author(s):  
Dini A. Prabowo ◽  
Muhammad A. Kariem ◽  
Leonardo Gunawan
2020 ◽  
Vol 10 (21) ◽  
pp. 7601
Author(s):  
Hyunho Shin ◽  
Sanghoon Kim ◽  
Jong-Bong Kim

To reveal the stress transfer mechanism of the flange in a split Hopkinson tension bar, explicit finite element analyses of the impact of the hollow striker on the flange were performed across a range of flange lengths. The tensile stress profiles monitored at the strain gauge position of the incident bar are interpreted on a qualitative basis using three types of stress waves: bar (B) waves, flange (F) waves, and a series of reverberation (Rn) waves. When the flange length (Lf) is long (i.e., Lf > Ls, where Ls is the striker length), the B wave and first reverberation wave (R1) are fully separated in the time axis. When the flange length is intermediate (~Db < Lf < Ls, where Db is the bar diameter), the B and F waves are partially superposed; the F wave is delayed, then followed by a series of Rn waves after the superposition period. When the flange length is short (Lf < ~Db), the B and F waves are practically fully superposed and form a pseudo-one-step pulse, indicating the necessity of a short flange length to achieve a neat tensile pulse. The magnitudes and periods of the monitored pulses are consistent with the analysis results using the one-dimensional impact theory, including a recently formulated equation for impact-induced stress when the areas of the striker and bar are different, equations for the reflection/transmission ratios of a stress wave, and an equation for pulse duration time. This observation verifies the flange length-dependent stress transfer mechanism on a quantitative basis.


2011 ◽  
Vol 181-182 ◽  
pp. 749-753
Author(s):  
Lv Tao Zhu ◽  
Bao Zhong Sun

In this study, tensile experiments of Twaron fiber tows under different strain rates (quasi-static:0.001s-1, dynamic: 800s-1~2400s-1) were carried out with MTS 810.23 materials tester and split Hopkinson tension bar (SHTB) respectively. The results showed that the mechanical properties of the Twaron fiber tows were sensitive to strain rate: the stiffness and failure stress of the fiber tows increased distinctly as the strain rate increased, while the failure strain decreased. From scanning electronic microscope (SEM) photographs of the fracture surface, it is indicated that the Twaron fiber tows failed in a more tough mode and the axial split will become more severe as the strain rate increases.


2010 ◽  
Vol 160-162 ◽  
pp. 891-894 ◽  
Author(s):  
Wen Huang ◽  
Zhong Wei Huang ◽  
Xiao Qing Zhou

In order to investigate the microstructure evolution of materials, loading and unloading experiments with specimens deformed at different strains are required. In this paper, momentum traps were introduced for rendering the conventional Split Hopkinson Tension Bar suitable for loading-unloading experiment. The new technique allows a specimen to be loaded to a preset strain for post-test characterization. This technique was applied to study the dynamic mechanical properties of pure titanium. The results show that: 1) the twinning density of titanium increases rapidly as the strain increases. 2) The strength and ductility of titanium exhibited on the adiabatic curve are much smaller then those exhibited on the isothermal curve, which may be caused by the adiabatic heat generated during the transient deformation process.


2019 ◽  
Vol 139 ◽  
pp. 103198
Author(s):  
Sahand Pourhassan Shamchi ◽  
Francisco J.M. Queirós de Melo ◽  
Paulo J. Tavares ◽  
Pedro M.G.P. Moreira

2020 ◽  
Vol 32 (7) ◽  
pp. 842-848
Author(s):  
Boyao Wang ◽  
Mengying Zhang ◽  
Enlin Han ◽  
Guofeng Tian ◽  
Guanghua Wang ◽  
...  

The tensile properties of polyimide (PI) filament tows were measured under quasi-static state and at high strain rates with a universal tensile testing machine and a split Hopkinson tension bar, respectively. Experimental results showed that mechanical behaviors of the tows were rather sensitive to strain rate, with failure stress and modulus increasing distinctly but the elongation at break declining as the strain rate increased. Besides, the PI filament tows exhibited a higher growth rate of fracture stress than para-aramid fiber and aramid III fiber did, and scanning electronic microscopy observation on the fracture surface indicated a ductile fracture mode. With the increase of strain rate, the axial splitting of fiber intensified. Further, strength distributions of the PI filament tows were evaluated by a single Weibull distribution function, and the curve predicted was in good accordance with the experimental data obtained.


2018 ◽  
Vol 183 ◽  
pp. 02023
Author(s):  
Noah Ledford ◽  
Hanna Paul ◽  
Matti Isakov ◽  
Stefan Hiermaier

Bonded joints are nowadays seen as one of the preferred joining methods in aerospace applications. However, the difficulty in certifying bond strength and the relatively low energy absorption capability of the joint are barriers to widespread adoption. The use of a hybrid joint, that is, the combination of a mechanical and a bonded joint, allows for a fail-safe design and offers improved performance of the joint. The quasi-static properties of hybrid joints have been investigated by a number of researchers. In contrast, the high rate loading regime has been only sparsely investigated. In this work, hybrid joints are tested in quasi-static and high rate loading in order to analyze their loading rate dependence. The hybrid joint studied is a composite-aluminum double lap shear joint with Sikaforce 7752 adhesive and Hi-Lite-315 countersunk titanium bolts. In order to quantitatively analyze the high rate behavior of the hybrid joints and their respective sub-components, additional tests are carried out on simply bonded and simply bolted specimens. The high rate characterization was performed with a Split Hopkinson Tension Bar. The main challenges for these tests are the relatively large specimen size and complex specimen geometry needed to properly characterize the joint behavior, which both are in contradiction with the assumptions of the classical Split Hopkinson Bar-analysis. In this paper we describe an approach to solve these challenges based on an elastic wave analysis of the system.


Strain ◽  
2014 ◽  
Vol 50 (3) ◽  
pp. 223-235 ◽  
Author(s):  
V. Vilamosa ◽  
A. H. Clausen ◽  
E. Fagerholt ◽  
O. S. Hopperstad ◽  
T. Børvik

Sign in / Sign up

Export Citation Format

Share Document