scholarly journals Damage detection assessment in reinforced concrete slabs using impact tests

2017 ◽  
Vol 199 ◽  
pp. 1976-1981 ◽  
Author(s):  
Roberto Pimentel ◽  
Tulio Guedes ◽  
Lucas Melo ◽  
Gabriel Ferreira ◽  
Márcio Gonçalves
Author(s):  
J.-M. Rambach ◽  
F. Tarallo

A simply supported reinforced concrete slender beam is modeled by 3 rigid consecutive elementary beams, the median beam being connected to the others by 2 viscous and elastoplastic spiral springs. The model can be assimilated as a non linear SDOF system convenient for the motion study of beams within flexural deformation domain, with displacements up to the height of the beam. The characteristics of the visco-elastoplastic springs are tuned so as be consistent with the beam motion before and after impact: the rigidity of the elastic domain of the springs is consistent with natural vibration frequencies which may be reduced after the impact due to subsequent damages. The motion of the beam during and after the impact is analyzed with such model: the values of the main mechanical characteristics (rigidity, plastic limit, viscous damping) may then be obtained. The impact tests performed by VTT (Finland) on one-way concrete slabs consolidate this approach and give consistent experimental values for the elastoplastic laws to be introduced in the model. With this experimental validation, the model may be used as a predictive tool for resistance and for displacements, as far as reinforced concrete beams and slabs are concerned. A thin reinforced concrete slab, simply supported along its 4 edges, is modeled by 4 to 5 rigid trapezoidal elementary slabs connected together by visco-elastoplastic spiral springs along the hinges. A non linear SDOF system is then developed to capture the behavior of such a slab within a flexural deformation domain, with displacements up to the slab thickness. The mechanism involving large shear deformations under the impact (“punching cone”) is taken into account by adding a second degree of freedom. The existing tests on reinforced concrete slabs submitted to medium velocity impacts found in literature may be used to consolidate this approach and to specify the values to be introduced in the model. The model will be used to analyze the forthcoming results (in terms of resistance and displacements) of VTT impact tests on simply supported reinforced concrete slabs. The behavior of civil works structures submitted to impacting missiles can nowadays be analyzed either with sophisticated FE calculation codes, or with analytical models. These analytical models may constitute simple but useful engineer’s tools for sensitivity analyses and for results checking of the necessary more sophisticated computation codes, in terms of resistance and in terms of displacement. They may be simply implemented on any spreadsheet software.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Elena Marrocchino ◽  
Chiara Telloli ◽  
Alessandra Aprile ◽  
Domenico Capuani ◽  
Davide Malaguti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document