scholarly journals Prediction of Distortions in Hot Forged Martensitic Stainless Steel Turbine Blades by Numerical Simulation

2015 ◽  
Vol 1 ◽  
pp. 804-813
Author(s):  
Enrico Simonetto ◽  
Stefania Bruschi ◽  
Andrea Ghiotti ◽  
Enrico Savio
Author(s):  
Noshir Langrana ◽  
Dan Qiu ◽  
Guohua Wu ◽  
Kathryn Higgins ◽  
Cheng Tiao Hsieh

Abstract Development of Solid Freeform Fabrication (SFF) systems has created the opportunity for new approaches in design of functional components, which leverages the inherent strengths of both experiment and numerical simulation. This paper describes an approach in which the computational models are integrated with the rapid prototyping fabrication processes. The parts are fabricated using different materials including wax, PZT, silicone nitride, and 17-4PH stainless steel powders for the SFF hardware (Langrana et al, 2000, Qiu et al, 1999, Danforth et al, 1998) and Ciba-Geigy SL-resin for SLA hardware (Higgins and Langrana, 1998, Higgins and Langrana 1999). The components such as turbine blades, actuators, and fixtures have been designed, simulated and fabricated. The properties of parts have been and are being quantified in terms of accuracy and quality.


Author(s):  
S.C. Atul ◽  
R. Adalarasan ◽  
M. Santhanakumar

The application of martensitic stainless steel in gas turbine blades, bushings, valves and mine ladder rungs requires wear and corrosion resistant surfaces. The process of boronizing can produce extremely hard and wear resistant surfaces for such components. The study depicts the application of Taguchi based desirability analysis for parameter design in the process of boronizing martensitic stainless steel. The surface hardness, diffusion depth and wear loss were observed on samples subjected to slurry paste boronizing (SPB). During experimentation, the parameters varied include the boronizing temperature, boronizing time and paste thickness. The optimal setting of the boronizing parameters identified by Taguchi based desirability analysis (TDA) was observed to improve the quality characteristics studied in the process significantly. The duration of boronizing process was found to play a major role in controlling the diffusion depth and the formation of a mono phasic (FeB) layer on the surface was found to be the reason for improved hardness and wear resistance.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1586 ◽  
Author(s):  
Yunxia Chen ◽  
Haichao Cui

1Cr12Mo martensitic stainless steel is widely used for intermediate and low-pressure steam turbine blades in fossil-fuel power plants. A nickel-based filler metal (SFA-5.8 BNi-2) was used to braze 1Cr12Mo in an Ar atmosphere. The influence of brazing temperature and hold time on the joints was studied. Microstructure of the joints brazed, element distribution and shear stress were evaluated at different brazing temperatures, ranging from 1050 °C to 1120 °C, with holding times of 10 s, 30 s, 50 s and 90 s. The results show that brazing joints mainly consist of the matrix of the braze alloy, the precipitation, and the diffusion affected zone. The filler metal elements diffusion is more active with increased brazing temperature and prolonged hold time. The shear strength of the brazed joints is greater than 250 MPa when the brazing temperature is 1080 °C and the hold time is 30 s.


Sign in / Sign up

Export Citation Format

Share Document