Design, Simulation and SFF Techniques for Functional Components

Author(s):  
Noshir Langrana ◽  
Dan Qiu ◽  
Guohua Wu ◽  
Kathryn Higgins ◽  
Cheng Tiao Hsieh

Abstract Development of Solid Freeform Fabrication (SFF) systems has created the opportunity for new approaches in design of functional components, which leverages the inherent strengths of both experiment and numerical simulation. This paper describes an approach in which the computational models are integrated with the rapid prototyping fabrication processes. The parts are fabricated using different materials including wax, PZT, silicone nitride, and 17-4PH stainless steel powders for the SFF hardware (Langrana et al, 2000, Qiu et al, 1999, Danforth et al, 1998) and Ciba-Geigy SL-resin for SLA hardware (Higgins and Langrana, 1998, Higgins and Langrana 1999). The components such as turbine blades, actuators, and fixtures have been designed, simulated and fabricated. The properties of parts have been and are being quantified in terms of accuracy and quality.

Author(s):  
José F. Rodríguez ◽  
James P. Thomas ◽  
John E. Renaud

Abstract The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for the optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS) components for stiffness and strength. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


2015 ◽  
Vol 1 ◽  
pp. 804-813
Author(s):  
Enrico Simonetto ◽  
Stefania Bruschi ◽  
Andrea Ghiotti ◽  
Enrico Savio

2003 ◽  
Vol 125 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Jose´ F. Rodrı´guez ◽  
James P. Thomas ◽  
John E. Renaud

The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS; P400) components for stiffness and strength under a given set of loading conditions. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters, which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


2012 ◽  
Vol 710 ◽  
pp. 101-109 ◽  
Author(s):  
Pulak M. Pandey

Material removal, forming, casting and joining are the established manufacturing approaches and processes based on these approaches are being practiced even in modern industries with appropriate automation. Layer by layer material deposition method to produce prototypes from a solid model is relatively new and was developed during last 10-15 years of 20th century. These processes were named as Rapid Prototyping (RP) or Solid Freeform Fabrication (SFF). Today there are many commercial RP system and most of these able to deposit liquid or solid/powder polymer based materials. Some systems are also able to deposit blends of polymer and metal or ceramic. Latest trend in this area is to deposit metals or alloys with variable composition and hence to produce functionally graded material. This paper describes in general the details related to RP processes, data preparation, and various commercial RP technologies. The article also discusses applications these processes.


Sign in / Sign up

Export Citation Format

Share Document