scholarly journals Workpiece Material Influence on Stability Lobe Diagram

2020 ◽  
Vol 47 ◽  
pp. 479-486
Author(s):  
Aratz Iturgaiz Ibañez ◽  
Pedro Jose Arrazola ◽  
Klaus Bonde Ørskov
2014 ◽  
Vol 887-888 ◽  
pp. 1200-1204 ◽  
Author(s):  
Te Ching Hsiao ◽  
Shyh Chour Huang

In the milling process, the dynamic system in the cutting process is composed of the tool, workpiece, and machine tools themselves. Therefore the mill geometric parameter, workpiece material behavior, and the modal parameters of the cutting system all will influence the stability in milling. Using FLN method and convolution force model to predict the chatter stability of milling process, and discussing the effect of milling parameter on the stability in this article. According to the result: with the increase of the tool diameter, stiffness, damping ratio or the reducing of tangential cutting force coefficient and radial width of cut, the stability lobe diagram tends to move upward. With the increase of natural frequency, the stability lobe diagram tends to move to right side. With the increase of the number of tooth, the stability lobe diagram tends to move downward.


Author(s):  
Xingwu Zhang ◽  
Ziyu Yin ◽  
Jiawei Gao ◽  
Jinxin Liu ◽  
Robert X. Gao ◽  
...  

Chatter is a self-excited and unstable vibration phenomenon during machining operations, which affects the workpiece surface quality and the production efficiency. Active chatter control has been intensively studied to mitigate chatter and expand the boundary of machining stability. This paper presents a discrete time-delay optimal control method for chatter suppression. A dynamical model incorporating the time-periodic and time-delayed characteristic of active chatter suppression during the milling process is first formulated. Next, the milling system is represented as a discrete linear time-invariant (LTI) system with state-space description through averaging and discretization. An optimal control strategy is then formulated to stabilize unstable cutting states, where the balanced realization method is applied to determine the weighting matrix without trial and error. Finally, a closed-loop stability lobe diagram (CLSLD) is proposed to evaluate the performance of the designed controller based on the proposed method. The CLSLD can provide the stability lobe diagram with control and evaluate the performance and robustness of the controller cross the tested spindle speeds. Through many numerical simulations and experimental studies, it demonstrates that the proposed control method can make the unstable cutting parameters stable with control on, reduce the control force to 21% of traditional weighting matrix selection method by trial and error in simulation, and reduce the amplitude of chatter frequency up to 78.6% in experiment. Hence, the designed controller reduces the performance requirements of actuators during active chatter suppression.


Author(s):  
Hui-Qun Chen ◽  
Qing-Hui Wang

Based on the Z-map model of a workpiece and the dynamic cutting forces model of peripheral milling in which the regenerative effect of tool radial runout and axial drift are considered, a model for the prediction of surface topography in peripheral milling operations is presented. According to the stability lobe diagram obtained by the zero-order analytical method, the relationship between spindle speed and surface topography, the tool radial runout, and the axial drift following the chatter are studied. The results show that a stable cutting status but a poor surface finish is obtained at the spindle speeds at which the dominant frequency of the milling system is integral multiples of the selected machining frequency, and a stable cutting status with a good surface finish can be obtained near and on the left side of the resonant spindle speeds determined by the predicted stability lobe diagram. The motion equations of any tooth end mill for peripheral milling are established, and these equations are based on the transformation matrix and the vector operation principle of motion-homogeneous coordinates. In addition, the simulation algorithm and the system of surface topography generated in peripheral milling are given based on the Z-map model. Cutting tests are carried out, and good agreement between the measured surface topographies and the topographies predicted by the model in this study is found in terms of their shape, magnitude, feed mark, profile height of cross-section, and surface roughness. The simulation results show that the milling surface roughness increases with the increase in feed per tooth, which further shows that this simulation system has high credibility. Thus, the simulation and experimental results can provide some practical instructions for the actual peripheral milling in determining the optimal machining conditions.


2009 ◽  
Vol 76-78 ◽  
pp. 624-629 ◽  
Author(s):  
Shan Shan Sun ◽  
W.X. Tang ◽  
H.F. Huang ◽  
Xi Qing Xu

A dynamics model is established considering gyroscopic effects due to high speed rotating spindle-tool system in ultra-high speed milling (USM). The proposed method for predicting stability enables a new 3D stability lobe diagram to be developed in the presence of gyroscopic effects, to cover all the intermediate stages of spindle speed. The influences of the gyroscopic effects on dynamics and stability in USM are analyzed. It is shown that the gyroscopic effects lower the resonance response frequencies of the spindle-tool system and the stable critical depth of cut in ultra-high speed milling.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADA VM500 machine spindle is developed and is validated against Finite Element Analysis (FEA).The model is then refined to incorporate flexibility of the system’s bearings, originally modeled as simply supported boundary conditions, where the bearings are modeled as linear spring elements.The system fundamental frequency obtained from the modal analysis carried on an experimental setup is then used to calibrate the DSM model by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD) for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to ensure chatter-free machining over the spindle’s life cycle.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Kulisz ◽  
I. Zagórski ◽  
A. Weremczuk ◽  
R. Rusinek ◽  
J. Korpysa

AbstractThis paper presents the results of experimental study of the AZ31 magnesium alloy milling process. Dry milling was carried out under high-speed machining conditions. First, a stability lobe diagram was determined using CutPro software. Next, experimental studies were carried out to verify the stability lobe diagram. The tests were carried out for different feed per tooth and cutting speed values using two types of tools. During the experimental investigations, cutting forces in three directions were recorded. The obtained time series were subjected to general analysis and analysis using composite multiscale entropy. Modelling and prediction were performed using Statistica Neural Network software, in which two types of neural networks were applied: multi-layered perceptron and radial basis function. It was observed that milling with high cutting speed values allows for component values of cutting force to be lowered as a result of the transition into the high-speed machining conditions range. In most cases, the highest values for the analysed parameters were recorded for the component Fx, whereas the lowest were recorded for Fy. Additionally, the paper shows that a prediction (with the use of artificial neural networks) of the components of cutting force can be made, both for the amplitudes of components of cutting force Famp and for root mean square Frms.


Author(s):  
Chao Xu ◽  
Pingfa Feng ◽  
Dingwen Yu ◽  
Zhijun Wu ◽  
Jianfu Zhang

Despite recent advances and improvements in modeling and prediction of the dynamics of the machining process, an efficient machining process is limited due to chatter and instability of machining system. In fact, the machining system contains various kinds of joints, which cause difficulties in dynamics modeling, simulation and prediction. Moreover, the flexible support system results in large deformation and violent vibration of the workpiece when machining, and the thin-walled workpiece easily gives rise to the chatter of the machining system. Therefore, the dynamics of the flexible support system was considered to calculate stability lobe diagram in the modeling of milling process. The whole machining system was regarded as a closed loop composed by the machine tool structures, support, workpiece and machining process. In this paper, the receptance coupling (RC) method was introduced to predict the dynamics of the closed machining system. A milling process was taken for example to predict the chatter limitations using the dynamics of closed model. The mathematical model of the machining system (machine tool structures, spindle, holder and tool), together with the details of joint contacts, was given based on the RC method. The RC model was used to obtain the dynamics of the system, while receptance of the tool point was coupled. Based on the coupling model of the machining system, the depth limitations under different speeds were estimated for the technology parameter optimization in milling process. The response was considered to be the sum of the cutting point and the support system. The flexibility of the support system was considered to be the feedback of the cutting stiffness. By this means, the traditional model was modified to calculate the stability lobe diagram based on the dynamics of the spindle and support system. Furthermore, the milling experiment was carried out to verify the prediction results, and the dominant natural frequencies of receptance at tool point were obtained by modal testing to define the stability lobe diagram. It was found that the chatter results matched well with the stability lobes. It was concluded that the support system with poor stiffness might cause violent chatter especially when the workpiece was thin-walled. The cutting depth limitations of the flexible support system were lower than that of the rigid one. Moreover, this closed model of the machining system is appropriate for the chatter prediction of the flexible support system or thin-walled workpiece, so it is helpful for a better parameter optimization.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADA VM500 machine spindle is developed and is validated against Finite Element Analysis (FEA).The model is then refined to incorporate flexibility of the system’s bearings, originally modeled as simply supported boundary conditions, where the bearings are modeled as linear spring elements.The system fundamental frequency obtained from the modal analysis carried on an experimental setup is then used to calibrate the DSM model by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD) for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to ensure chatter-free machining over the spindle’s life cycle.


Sign in / Sign up

Export Citation Format

Share Document