scholarly journals Brittle fracture analysis of Dissimilar Metal Welds between low-alloy steel and stainless steel at low temperatures

2018 ◽  
Vol 13 ◽  
pp. 619-624
Author(s):  
Ghassen Ben Salem ◽  
Stéphane Chapuliot ◽  
Arnaud Blouin ◽  
Philippe Bompard ◽  
Clémentine Jacquemoud
Author(s):  
Pierre Joly ◽  
Miguel Yescas ◽  
Elisabeth Keim

Dissimilar metal welds (DMW) are used in nuclear power plants between the nozzles of main components in low alloy steel and stainless steel pipes, or safe-ends connected to the main coolant line pipes. AREVA proposes for EPR™ an improved design of DMW involving narrow gap welding without buttering between the low alloy steel nozzles and the stainless steel safe-ends, and the use of a corrosion resistant weld filler metal (Alloy 52). AREVA performed a thorough characterization of this type of welds, which shows a particular microstructure close to the fusion line between the low alloy steel and the nickel base alloy, where the heat affected zone of the low alloy steel is decarburized. This paper presents results of fracture toughness tests performed with the crack tip located in this area, in the ductile to brittle transition in the as post-welded heat treated condition and after thermal ageing. The results show an excellent fracture toughness behavior of this particular area, compared to that of low alloy steel parent metal.


Author(s):  
Steven L. McCracken ◽  
Richard E. Smith

Dissimilar metal welds of filler metal 182 (ENiCrFe-3) in the primary loop of pressurized water reactor (PWR) nuclear plants are susceptible to primary water stress corrosion cracking (PWSCC) after decades of service. Repair or mitigation has been routinely accomplished by installing a structural weld overlay (SWOL) on the filler metal 182 weld joint with the more PWSCC resistant filler metal 52M (ERNiCrFe-7A). The typical dissimilar metal joint consists of a low alloy steel vessel nozzle welded to an austenitic stainless steel safe end. The SWOL extends from the low alloy steel nozzle over the safe end and most often onto the adjoining wrought or cast stainless steel pipe. Field experience shows that filler metal 52M is susceptible to hot cracking when welding on certain heats of centrifugally cast stainless steel piping. This report evaluates 52M hot cracking when welding on CASS piping and provides the likely cause and mechanism for the cracking. The synergistic influence of silicon (Si) and sulfur (S) elements on the weld bead shape and dilution that leads to hot cracking is investigated. In addition, studies on the influence and use of the gas tungsten arc welding (GTAW) power ratio parameter for 52M overlays are presented.


2018 ◽  
Vol 32 (3) ◽  
pp. 20
Author(s):  
Manas Kumar Saha ◽  
Ritesh Hazra ◽  
Ajit Mondal ◽  
Santanu Das

2018 ◽  
Vol 51 (4) ◽  
pp. 46
Author(s):  
N. Venkateswara Rao ◽  
G. Madhusudhan Reddy ◽  
S. Nagarjuna

CORROSION ◽  
10.5006/3697 ◽  
2021 ◽  
Author(s):  
Nicolas Larche ◽  
Perry Nice ◽  
Hisashi Amaya ◽  
Lucrezia Scoppio ◽  
Charles Leballeur ◽  
...  

In seawater injection wells, the available well tubing materials are generally Low alloy steel, Glass Reinforced Epoxy lined low alloy steel or Corrosion Resistant Alloy’s (CRA) such as super duplex stainless steel. However, in treated seawater the corrosion risk can be controlled and lower grade alloys (low alloy steel) can be considered. But for long well lifetime designs (20 years plus), then low alloy steel tubing can be challenged. In this respect recent efforts have focused attention on better dissolved oxygen control which permits the investigation and on the possible use of more cost-effective materials such as the duplex stainless steels UNS S82551, and UNS S82541 (the latter is a higher strength version, but same PRENw). Full scale testing of tubes joined together with a proprietary premium threaded connection (PCPC couplings) was performed in controlled seawater loops simulating service conditions at 30°C. The flow rate and dissolved oxygen were controlled at 5 m/s and <20ppb, respectively. Weekly dissolved oxygen excursions corresponding to 24h at 100ppb followed by 1 hour at 300ppb were performed during the 5 months exposure. Corrosion results of UNS S82551/S82541 tubing were compared to UNS S31803 and UNS S39274. In parallel, laboratory exposures of creviced coupons for parametric study were performed in dissolved oxygen-controlled cells, allowing the measurement of electrochemical potentials as function of dissolved oxygen content and the related corrosion resistance. The results showed that dissolved oxygen content should be properly controlled below critical values to avoid crevice corrosion of the lesser alloyed duplex stainless steels. The ability of UNS S82541 to recover or re-passivate after prolonged exposures to high dissolved oxygen concentrations (DOC) was also determined with both the use of full sized pipe-coupling premium connection (PCPC) test cells, and electrochemical testing involving a Remote Crevice Assembly (RCA). The re-passivation potential was investigated after different active crevice corrosion durations. The results of the study allowed to precisely define the limits of use of UNS S82541 in treated seawater, i. e. the critical DOC conditions for corrosion initiation and for re-passivation of UNS S82541. For all tested conditions, the UNS S82551/S82541 showed a rather good ability to re-passivation when normal service conditions (i. e. low dissolved oxygen) are recovered.


Sign in / Sign up

Export Citation Format

Share Document