scholarly journals Prediction of Tensile Strength in Friction Stir Welded Aluminium Alloy Using Artificial Neural Network

2014 ◽  
Vol 14 ◽  
pp. 274-281 ◽  
Author(s):  
N.D. Ghetiya ◽  
K.M. Patel
Author(s):  
Ravi Butola ◽  
Ranganath M. Singari ◽  
Qasim Murtaza ◽  
Lakshay Tyagi

In the present work, nanoboron carbide is integrated in the aluminum matrix using friction stir processing: by varying process parameters, that is, tool pin profile, tool rotational speed and tool traverse speed, based on Taguchi L16 design of experiment. A self-assembled monolayer is successfully developed on the substrate to homogeneously and uniformly distribute the reinforcement particles. Response surface methodology and artificial neural network models are developed using ultimate tensile strength and total elongation as responses. Percentage absolute error between the experimental and predicted values of ultimate tensile strength and total elongation for the response surface methodology model is 3.537 and 2.865, respectively, and for artificial neural network is 2.788 and 2.578, respectively. For both the developed models experimental and forecasted values are in close approximation. The artificial neural network model showed slightly better predictive capacity compared to the response surface methodology model. From the scanning electron microscopy micrograph, it is evident that throughout the matrix B4C reinforcement particles are well distributed also; with increasing tool rotational speed grain size decreases up to 1200 r/min; on further increasing the tool rotational speed particles starts clustering.


Author(s):  
Saurabh Kumar Gupta ◽  
KN Pandey ◽  
Rajneesh Kumar

The present research investigates the application of artificial intelligence tool for modelling and multi-objective optimization of friction stir welding parameters of dissimilar AA5083-O–AA6063-T6 aluminium alloys. The experiments have been conducted according to a well-designed L27 orthogonal array. The experimental results obtained from L27 experiments were used for developing artificial neural network-based mathematical models for tensile strength, microhardness and grain size. A hybrid approach consisting of artificial neural network and genetic algorithm has been used for multi-objective optimization. The developed artificial neural network-based models for tensile strength, microhardness and grain size have been found adequate and reliable with average percentage prediction errors of 0.053714, 0.182092 and 0.006283%, respectively. The confirmation results at optimum parameters showed considerable improvement in the performance of each response.


2018 ◽  
Vol 5 (9) ◽  
pp. 19908-19915 ◽  
Author(s):  
M. Gayatri Vineela ◽  
Abhishek Dave ◽  
Phaneendra Kiran Chaganti

Sign in / Sign up

Export Citation Format

Share Document