scholarly journals Stabilization of Outer Domain of gp120 from HIV-1 Subtype C for Vaccine Immunogen Design

2015 ◽  
Vol 9 ◽  
pp. 6-15 ◽  
Author(s):  
Jesse Thompson ◽  
Pankaj Kumar ◽  
Jizu Yi ◽  
Dane Bowder ◽  
Charles Wood ◽  
...  
Retrovirology ◽  
2012 ◽  
Vol 9 (S2) ◽  
Author(s):  
P Kunwar ◽  
NR Hawkins ◽  
X Yu ◽  
Y Liu ◽  
A Collier ◽  
...  

2014 ◽  
Vol 30 (S1) ◽  
pp. A8-A8
Author(s):  
Saikat Boliar ◽  
Supratik Das ◽  
Manish Bansal ◽  
Brihaspati Narayan Shukla ◽  
Shilpa Patil ◽  
...  

2020 ◽  
Vol 8 ◽  
pp. 251513552095776
Author(s):  
Supratik Das ◽  
Rajesh Kumar ◽  
Shubbir Ahmed ◽  
Hilal Ahmad Parray ◽  
Sweety Samal

The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.


2016 ◽  
Vol 90 (9) ◽  
pp. 4481-4493 ◽  
Author(s):  
Gilad Kaplan ◽  
Anna Roitburd-Berman ◽  
George K. Lewis ◽  
Jonathan M. Gershoni

ABSTRACTThe HIV envelope binds cellular CD4 and undergoes a range of conformational changes that lead to membrane fusion and delivery of the viral nucleocapsid into the cellular cytoplasm. This binding to CD4 reveals cryptic and highly conserved epitopes, the molecular nature of which is still not fully understood. The atomic structures of CD4 complexed with gp120 core molecules (a form of gp120 in which the V1, V2, and V3 loops and N and C termini have been truncated) have indicated that a hallmark feature of the CD4-bound conformation is the bridging sheet minidomain. Variations in the orientation of the bridging sheet hairpins have been revealed when CD4-liganded gp120 was compared to CD4-unliganded trimeric envelope structures. Hence, there appears to be a number of conformational transitions possible in HIV-1 monomeric gp120 that are affected by CD4 binding. The spectrum of CD4-bound conformations has been interrogated in this study by using a well-characterized panel of conditional, CD4-induced (CD4i) monoclonal antibodies (MAbs) that bind HIV-1 gp120 and its mutations under various conditions. Two distinct CD4i epitopes of the outer domain were studied: the first comprises the bridging sheet, while the second contains elements of the V2 loop. Furthermore, we show that the unliganded extended monomeric core of gp120 (coree) assumes an intermediate CD4i conformation in solution that further undergoes detectable rearrangements upon association with CD4. These discoveries impact both accepted paradigms concerning gp120 structure and the field of HIV immunogen design.IMPORTANCEElucidation of the conformational transitions that the HIV-1 envelope protein undergoes during the course of entry into CD4+cells is fundamental to our understanding of HIV biology. The binding of CD4 triggers a range of gp120 structural rearrangements that could present targets for future drug design and development of preventive vaccines. Here we have systematically interrogated and scrutinized these conformational transitions using a panel of antibody probes that share a specific preference for the CD4i conformations. These have been employed to study a collection of gp120 mutations and truncations. Through these analyses, we propose 4 distinct sequential steps in CD4i transitions of gp120 conformations, each defined by antibody specificities and structural requirements of the HIV envelope monomer. As a result, we not only provide new insights into this dynamic process but also define probes to further investigate HIV infection.


2015 ◽  
Vol 12 (1) ◽  
pp. 3 ◽  
Author(s):  
Jaclyn K Mann ◽  
Thumbi Ndung’u

Vaccine ◽  
2017 ◽  
Vol 35 (23) ◽  
pp. 3067-3075 ◽  
Author(s):  
Duoyi Hu ◽  
Dane Bowder ◽  
Wenzhong Wei ◽  
Jesse Thompson ◽  
Mark A. Wilson ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12463 ◽  
Author(s):  
Morgane Rolland ◽  
Jonathan M. Carlson ◽  
Siriphan Manocheewa ◽  
J. Victor Swain ◽  
Erinn Lanxon-Cookson ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Ashley Lauren Bennett ◽  
Rory Henderson

The HIV-1 envelope glycoprotein (Env) mediates host cell fusion and is the primary target for HIV-1 vaccine design. The Env undergoes a series of functionally important conformational rearrangements upon engagement of its host cell receptor, CD4. As the sole target for broadly neutralizing antibodies, our understanding of these transitions plays a critical role in vaccine immunogen design. Here, we review available experimental data interrogating the HIV-1 Env conformation and detail computational efforts aimed at delineating the series of conformational changes connecting these rearrangements. These studies have provided a structural mapping of prefusion closed, open, and transition intermediate structures, the allosteric elements controlling rearrangements, and state-to-state transition dynamics. The combination of these investigations and innovations in molecular modeling set the stage for advanced studies examining rearrangements at greater spatial and temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document