Altered corticostriatal pathway in first-episode paranoid schizophrenia: Resting-state functional and causal connectivity analyses

2018 ◽  
Vol 272 ◽  
pp. 38-45 ◽  
Author(s):  
Huan Huang ◽  
Chang Shu ◽  
Jun Chen ◽  
Jilin Zou ◽  
Cheng Chen ◽  
...  
Author(s):  
Wenbin Guo ◽  
Changqing Xiao ◽  
Guiying Liu ◽  
Sarah C. Wooderson ◽  
Zhikun Zhang ◽  
...  

2020 ◽  
Author(s):  
Xiangyun Long ◽  
Jiaxin Wu ◽  
Fei Liu ◽  
Ansi Qi ◽  
Nan Huang ◽  
...  

Abstract Childhood trauma is a central risk factor for schizophrenia. We explored the correlation between early traumatic experiences and the functional connectivity of resting-state networks. This fMRI study included 28 first-episode schizophrenia patients and 27 healthy controls. In first-episode schizophrenia patients, higher levels of childhood trauma associated with abnormal connections of resting-state networks, and these anomalies distributed among task-positive networks (i.e., ventral attention network, dorsal-ventral attention network and frontal-parietal network), and sensory networks (i.e., visual network and auditory network). These findings mentioned that childhood traumatic experiences may impact resting-state network connectivity in adulthood, mainly involving systems related to attention and execution control.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


Author(s):  
Maria Jalbrzikowski ◽  
Fuchen Liu ◽  
William Foran ◽  
Kathryn Roeder ◽  
Bernie Devlin ◽  
...  

AbstractBackgroundResting-state functional neuroimaging captures large-scale network organization; whether this organization is intact or disrupted during adolescent development across the psychosis spectrum is unresolved. We investigated the integrity of network organization in psychosis spectrum youth and those with first episode psychosis (FEP) from late childhood through adulthood.MethodsWe analyzed data from Philadelphia Neurodevelopmental Cohort (PNC; typically developing = 450, psychosis spectrum = 273, 8–22 years), a longitudinal cohort of typically developing youth (LUNA; N = 208, 1–3 visits, 10–25 years), and a sample of FEP (N = 39) and matched controls (N = 34). We extracted individual time series and calculated correlations from brain regions and averaged them for 4 age groups: late childhood, early adolescence, late adolescence, adulthood. Using multiple analytic approaches, we assessed network stability across 4 age groups, compared stability between controls and psychosis spectrum youth, and compared group-level network organization of FEP to controls. We explored whether variability in cognition or clinical symptomatology was related to network organization.ResultsNetwork organization was stable across the 4 age groups in the PNC and LUNA typically developing youth and PNC psychosis spectrum youth. Psychosis spectrum and typically developing youth had similar functional network organization during all age ranges. Network organization was intact in PNC youth who met full criteria for psychosis and in FEP. Variability in cognitive functioning or clinical symptomatology was not related to network organization in psychosis spectrum youth or FEP.DiscussionThese findings provide rigorous evidence supporting intact functional network organization in psychosis risk and psychosis from late childhood through adulthood.


Sign in / Sign up

Export Citation Format

Share Document