scholarly journals Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling

2018 ◽  
Vol 117 ◽  
pp. 523-532 ◽  
Author(s):  
Federico Volpin ◽  
Emilie Fons ◽  
Laura Chekli ◽  
Jung Eun Kim ◽  
Am Jang ◽  
...  
2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


Desalination ◽  
2016 ◽  
Vol 398 ◽  
pp. 265-281 ◽  
Author(s):  
Tewodros Nigatu Bitaw ◽  
Kiho Park ◽  
Dae Ryook Yang

2011 ◽  
Vol 64 (7) ◽  
pp. 1443-1449 ◽  
Author(s):  
Kerusha Lutchmiah ◽  
Emile R. Cornelissen ◽  
Danny J. H. Harmsen ◽  
Jan W. Post ◽  
Keith Lampi ◽  
...  

This research is part of the Sewer Mining project aimed at developing a new technological concept by extracting water from sewage by means of forward osmosis (FO). FO, in combination with a reconcentration system, e.g. reverse osmosis (RO) is used to recover high-quality water. Furthermore, the subsequent concentrated sewage (containing an inherent energy content) can be converted into a renewable energy (RE) source (i.e. biogas). The effectiveness of FO membranes in the recovery of water from sewage has been evaluated. Stable FO water flux values (>4.3 LMH) were obtained with primary effluent (screened, not treated) used as the feed solution. Fouling of the membrane was also induced and further investigated. Accumulated fouling was found to be apparent, but not irreversible. Sewer Mining could lead to a more economical and sustainable treatment of wastewater, facilitating the extraction of water and energy from sewage and changing the way it is perceived: not as waste, but as a resource.


Desalination ◽  
2015 ◽  
Vol 363 ◽  
pp. 26-36 ◽  
Author(s):  
Gaetan Blandin ◽  
Arne R.D. Verliefde ◽  
Chuyang Y. Tang ◽  
Pierre Le-Clech

2020 ◽  
Vol 81 (12) ◽  
pp. 2674-2684
Author(s):  
Jiandong Lu ◽  
Xiuheng Wang

Abstract Coal chemical industry (CCI) generally utilizes reverse osmosis (RO) for water reclamation, which generates a highly concentrated stream containing refractory organic substances and high-concentration total dissolved solids (TDS). To address this issue, the present work focuses on volume reduction of RO concentrate (ROC) produced from CCI by forward osmosis (FO). We investigated the effects of membrane orientation and draw solution (DS) concentration on FO performance. Foulant removal was tested by using chemical cleaning, physical cleaning and osmotic backwash (OB). AL-FS (active layer facing feed solution) mode outcompeted AL-DS (active layer facing draw solution) mode, achieving a flux of 26.4 LMH, 92.5% water reclamation and energy consumption of 0.050 kWh·m−3 with 4 M NaCl as DS. The FO process was able to reject >98% SO42−, Mg2+and Ca2+, 92–98% Si and 33–55% total organic carbon (TOC). Ten-cycle (10 × 20 h) accelerated fouling test demonstrated approximately 30% flux decline in association with Si-containing foulants, which could be removed almost completely through OB with 97.1% flux recovery. This study provides a proof-of-concept demonstration of FO for volume reduction and water reclamation of ROC produced from CCI, making the treatment of ROC more efficient and more energy effective.


Sign in / Sign up

Export Citation Format

Share Document