scholarly journals The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species

2020 ◽  
Vol 99 (11) ◽  
pp. 5936-5945
Author(s):  
Sudhir Yadav ◽  
Po-Yun Teng ◽  
Tatiane Souza dos Santos ◽  
Rebecca Lizabeth Gould ◽  
Steven Wesley Craig ◽  
...  
2015 ◽  
Vol 15 (3) ◽  
pp. 681-697 ◽  
Author(s):  
Qiu Jue Wu ◽  
Qin Yu Wang ◽  
Tian Wang ◽  
Yan Min Zhou

Abstract The effects of natural clinoptilolite (NCLI) and modified clinoptilolite (MCLI) were evaluated in broilers challenged with lipopolysaccharide (LPS) in a 21-d feeding trial. A total of 288 one-day-old chickens were allocated into three treatment groups: control, NCLI (2%) and MCLI (2%). Half of the birds from each treatment group were challenged with either 0.9% NaCl solution or LPS (250 μg/kg body weight, orally administered) at 16, 18 and 21 d of age. Before the LPS challenge, no dietary effect on bird growth performance was found (P>0.05). When LPS was orally administered, no significant changes in growth performance of broilers was found (P>0.05). However, small intestinal morphology and development, malondialdehyde (MDA) content of the jejunual and ileal mucosa, and superoxide dismutase (SOD) activity of the ileal mucosa were significantly affected (P<0.05). Supplementation with NCLI and MCLI significantly decreased the MDA contents of the jejunual and ileal mucosa and improved the SOD activity of the ileal mucosa and the development of the small intestine compared with the control group (P<0.05). The results indicated that NCLI and MCLI additions in feed had protective effects on the gut health of broilers against LPS challenge.


2020 ◽  
Author(s):  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Maryam Hafizi ◽  
Kamran Taherpour ◽  
Mohammad Hassan Nazaran

Abstract Background: Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. Methods: This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-d-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100 % of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results: Diets CTM50 and CTM100 increased average daily gain (ADG), European performance index (EPI), and tibia length compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and serum malondialdehyde level and highest EPI, tibia ash, zinc, manganese, and copper contents, and serum total antioxidant capacity (P < 0.05). The apparent ileal digestibilities of phosphorus and zinc were lower in the ITM group compared with the CTM25 and CTM50 groups (P < 0.05). Broiler chickens fed any of the diets, except diet CTM25, exhibited higher serum glutathione peroxidase and superoxide dismutase activities than those fed the NTM diet, where the best glutathione peroxidase activity was found for CTM100 treatment (P < 0.05). Conclusions: These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, bone mineralization, and antioxidant status, a totally replacing ITM by equivalent levels of CTM could also improve performance index and glutathione peroxidase activity of broiler chickens under the conditions of this study.


2020 ◽  
Author(s):  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Maryam Hafizi ◽  
Kamran Taherpour ◽  
Mohammad Hassan Nazaran

Abstract Background: Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-d-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100 % of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results: All diets, except diet CTM25, increased average daily gain (ADG), European performance index (EPI), and serum total antioxidant capacity compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and highest BWG, EPI, tibia ash, zinc, and manganese contents (P < 0.05). The tibia phosphorus content and apparent ileal digestibilities of phosphorus, zinc, and manganese were lower in the ITM group compared with the CTM50 and CTM100 groups (P < 0.05). Broiler chickens fed any of the diets exhibited higher serum glutathione peroxidase and superoxide dismutase activities and lower malondialdehyde level than those fed the NTM diet, where the best values were found for CTM100 treatment (P < 0.05). Conclusions: These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, a totally replacing ITM by equivalent levels of CTM could also improve growth performance, bone mineralization and antioxidant status of broiler chickens under the conditions of this study.


Author(s):  
Vasil Pirgozliev ◽  
Stephen Charles Mansbridge ◽  
Isobel Margaret Whiting ◽  
Charlotte Arthur ◽  
Stephen Paul Rose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document