scholarly journals Pathogenicity and Innate Response to Avibacterium paragallinarum in Chickens

2021 ◽  
pp. 101523
Author(s):  
Mengjiao Guo ◽  
Donghui Liu ◽  
Xiufang Chen ◽  
Yantao Wu ◽  
Xiaorong Zhang
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhou Yu ◽  
Xuelian Li ◽  
Mingjin Yang ◽  
Jiaying Huang ◽  
Qian Fang ◽  
...  

AbstractSensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.


2009 ◽  
Vol 83 (20) ◽  
pp. 10761-10769 ◽  
Author(s):  
Andreas Pichlmair ◽  
Oliver Schulz ◽  
Choon-Ping Tan ◽  
Jan Rehwinkel ◽  
Hiroki Kato ◽  
...  

ABSTRACT Recognition of virus presence via RIG-I (retinoic acid inducible gene I) and/or MDA5 (melanoma differentiation-associated protein 5) initiates a signaling cascade that culminates in transcription of innate response genes such as those encoding the alpha/beta interferon (IFN-α/β) cytokines. It is generally assumed that MDA5 is activated by long molecules of double-stranded RNA (dsRNA) produced by annealing of complementary RNAs generated during viral infection. Here, we used an antibody to dsRNA to show that the presence of immunoreactivity in virus-infected cells does indeed correlate with the ability of RNA extracted from these cells to activate MDA5. Furthermore, RNA from cells infected with encephalomyocarditis virus or with vaccinia virus and precipitated with the anti-dsRNA antibody can bind to MDA5 and induce MDA5-dependent IFN-α/β production upon transfection into indicator cells. However, a prominent band of dsRNA apparent in cells infected with either virus does not stimulate IFN-α/β production. Instead, stimulatory activity resides in higher-order structured RNA that contains single-stranded RNA and dsRNA. These results suggest that MDA5 activation requires an RNA web rather than simply long molecules of dsRNA.


2007 ◽  
Vol 122 (3-4) ◽  
pp. 280-289 ◽  
Author(s):  
Yuan-Man Hsu ◽  
Happy K. Shieh ◽  
Wei-Hao Chen ◽  
Jia-Hsiang Shiang ◽  
Poa-Chun Chang

2011 ◽  
Vol 6 (4) ◽  
pp. e50-e51
Author(s):  
V Morales-Erasto ◽  
A García-Sánchez ◽  
C Salgado-Miranda ◽  
M Talavera-Rojas ◽  
F Robles-González ◽  
...  

2018 ◽  
Vol 30 (5) ◽  
pp. 784-788 ◽  
Author(s):  
Manuela Crispo ◽  
C. Gabriel Sentíes-Cué ◽  
George L. Cooper ◽  
Grace Mountainspring ◽  
Charles Corsiglia ◽  
...  

Infectious coryza, caused by Avibacterium paragallinarum, is an acute respiratory disease of poultry that can result in substantial morbidity, mortality, and economic losses. In March 2017, the Turlock branch of the California Animal Health and Food Safety laboratory system encountered an unusual clinical and pathologic presentation of infectious coryza in 6 live, 29-d-old, commercial broiler chickens that were submitted for diagnostic investigation. Antemortem evaluation revealed severe neurologic signs, including disorientation, torticollis, and opisthotonos. Swollen head–like syndrome and sinusitis were also present. Histologically, severe sinusitis, cranial osteomyelitis, otitis media and interna, and meningoencephalitis were noted, explaining the clinical signs described. A. paragallinarum was readily isolated from the upper and lower respiratory tract, brain, and cranial bones. Infectious bronchitis virus (IBV) was also detected by PCR, and IBV was isolated in embryonated chicken eggs. Based on sequencing analysis, the IBV appeared 99% homologous to strain CA1737. A synergistic effect between A. paragallinarum and IBV, resulting in exacerbation of clinical signs and increased mortality, may have occurred in this case. A. paragallinarum should be considered among the possible causes of neurologic signs in chickens. Appropriate media should be used for bacterial isolation, and the role of additional contributing factors and/or complicating agents should be investigated in cases of infectious coryza.


Sign in / Sign up

Export Citation Format

Share Document