Delayed Death by Plastid Inhibition in Apicomplexan Parasites

2019 ◽  
Vol 35 (10) ◽  
pp. 747-759 ◽  
Author(s):  
Kit Kennedy ◽  
Emily M. Crisafulli ◽  
Stuart A. Ralph
mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Priyanka Bansal ◽  
Anuj Tripathi ◽  
Vandana Thakur ◽  
Asif Mohmmed ◽  
Pushkar Sharma

ABSTRACT Mechanisms by which 3′-phosphorylated phosphoinositides (3′-PIPs) regulate the development of apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are poorly understood. The catabolic process of autophagy, which is dependent on autophagy-related proteins (ATGs), is one of the major targets of 3′-PIPs in yeast and mammals. In the present study, we identified autophagy-related protein ATG18 as an effector of 3′-PIPs in these parasites. P. falciparum ATG18 (PfATG18) and T. gondii ATG18 (TgATG18) interact with 3′-PIPs but exhibited differences in their specificity of interaction with the ligand PIP. The conditional knockdown of T. gondii or P. falciparum ATG18 (Tg/PfATG18) impaired replication of parasites and resulted in their delayed death. Intriguingly, ATG18 depletion resulted in the loss of the apicomplexan parasite-specific nonphotosynthetic plastid-like organelle apicoplast, which harbors the machinery for biosynthesis of key metabolites, and the interaction of ATG18 to phosphatidylinositol 3-phosphate (PI3P) was critical for apicoplast inheritance. Furthermore, ATG18 regulates membrane association and apicoplast localization of ATG8. These findings provide insights into a novel noncanonical role of ATG18 in apicoplast inheritance. This function of ATG18 in organelle biogenesis is unprecedented in any organism and may be conserved across most apicomplexan parasites. IMPORTANCE Typically, autophagy is a catabolic process utilized by cells for their survival upon encountering nutrient-limiting conditions. The autophagy machinery is very tightly regulated, and autophagy-related genes (ATGs) play a pivotal role in this process. In the present study, we report a novel noncanonical function of autophagy-related protein ATG18 in inheritance of the nonphotosynthetic plastid-like organelle apicoplast in apicomplexan parasites Plasmodium and Toxoplasma. ATG18 depletion in these parasites resulted in “delayed death,” which was the result of loss of apicoplast and impaired parasite division. Pf/TgATG18 interact with 3′-phosphorylated PIPs, which guide their cellular localization in the parasite, which is essential for their function. IMPORTANCE Typically, autophagy is a catabolic process utilized by cells for their survival upon encountering nutrient-limiting conditions. The autophagy machinery is very tightly regulated, and autophagy-related genes (ATGs) play a pivotal role in this process. In the present study, we report a novel noncanonical function of autophagy-related protein ATG18 in inheritance of the nonphotosynthetic plastid-like organelle apicoplast in apicomplexan parasites Plasmodium and Toxoplasma. ATG18 depletion in these parasites resulted in “delayed death,” which was the result of loss of apicoplast and impaired parasite division. Pf/TgATG18 interact with 3′-phosphorylated PIPs, which guide their cellular localization in the parasite, which is essential for their function.


2009 ◽  
Vol 39 (2) ◽  
pp. 175-189 ◽  
Author(s):  
Hans-Peter Beck ◽  
Damer Blake ◽  
Marie-Laure Dardé ◽  
Ingrid Felger ◽  
Susana Pedraza-Díaz ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Author(s):  
Sujaan Das ◽  
Johannes Felix‐Stortz ◽  
Markus Meissner ◽  
Javier Periz

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malabika Chakrabarti ◽  
Nishant Joshi ◽  
Geeta Kumari ◽  
Preeti Singh ◽  
Rumaisha Shoaib ◽  
...  

AbstractCytoskeletal structures of Apicomplexan parasites are important for parasite replication, motility, invasion to the host cell and survival. Apicortin, an Apicomplexan specific protein appears to be a crucial factor in maintaining stability of the parasite cytoskeletal assemblies. However, the function of apicortin, in terms of interaction with microtubules still remains elusive. Herein, we have attempted to elucidate the function of Plasmodium falciparum apicortin by monitoring its interaction with two main components of parasite microtubular structure, α-tubulin-I and β-tubulin through in silico and in vitro studies. Further, a p25 domain binding generic drug Tamoxifen (TMX), was used to disrupt PfApicortin-tubulin interactions which led to the inhibition in growth and progression of blood stage life cycle of P. falciparum.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


2013 ◽  
Vol 16 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Markus Meissner ◽  
David JP Ferguson ◽  
Freddy Frischknecht

Sign in / Sign up

Export Citation Format

Share Document