tetrapyrrole synthesis
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009725
Author(s):  
Setsuko Wakao ◽  
Patrick M. Shih ◽  
Katharine Guan ◽  
Wendy Schackwitz ◽  
Joshua Ye ◽  
...  

Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria, 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.


Author(s):  
Jason R Marcero ◽  
James Eric Cox ◽  
Hector A Bergonia ◽  
Amy E Medlock ◽  
John D Phillips ◽  
...  

As part of the inflammatory response by macrophages, Irg1 is induced resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron, but instead may be acquired from central macrophages within the erythroid island. Previously we reported that itaconate inhibits hemoglobinzation of developing erythroid cells. Herein we demonstrate that this is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl-CoA by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation, but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.


2021 ◽  
Author(s):  
Setsuko Wakao ◽  
Patrick M. Shih ◽  
Katharine Guan ◽  
Wendy Schackwitz ◽  
Joshua Ye ◽  
...  

AbstractLarge-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and 1405 genes in total were affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 273 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 55 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 68 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria, 15 genes encode proteins previously shown to have functions unrelated to photosynthesis, and 190 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, represents a rich resource for gene discovery and protein functional analysis in photosynthesis.


2021 ◽  
Author(s):  
Elena Yu. Garnik ◽  
Vadim I. Belkov ◽  
Vladislav I. Tarasenko ◽  
Yury M. Konstantinov

Abstract Plant glutamate dehydrogenase is an enzyme interconverting L-glutamate and 2-oxoglutarate and providing a link between carbon and nitrogen metabolism. In Arabidopsis thaliana, this enzyme is encoded by three genes. Two of them, GDH1 and GDH2, provide most of the enzyme activity in plant leaves and roots. Expression of GDH1 and GDH2 genes is very low in the light and high in the dark. The molecular signals and mechanisms that provide the light-dependent GDH genes regulation remain unknown. Using photosynthetic electron transport inhibitors 3-(3.4-dichlorophenyl)-1.1-dimethylurea (DCMU) and 2.5-dibromo-3-methyl-6-isopropyl benzoquinone (DBMIB) we demonstrate that transcript levels of the GDH1 and GDH2 genes in Arabidopsis leaves change in accordance with a redox state of chloroplast electron transport chain: they are low when it is highly reduced and high when it is oxidized. Hydrogen peroxide or high light treatment did not result in decreasing of GDH1 or GDH2 expression, so reactive oxygen species cannot be the signals that reduce expression of these genes during dark-to-light shifts. There was no significant difference between the glucose content in the leaves of plants treated with DCMU and the plants treated with DBMIB, so glucose is not the only or the main factor that regulates expression of the studied genes. We presume that expression of Arabidopsis GDH1 and GDH2 genes depends on the chloroplast electron transport chain redox state. This regulatory mechanism could arise because of a need to avoid a competition for substrate between tetrapyrrole synthesis, glutathione synthesis and using of L-glutamate as an energy source during prolonged darkness.


2020 ◽  
Vol 36 (0) ◽  
pp. 21-22
Author(s):  
Donal F. O’SHEA ◽  
Roger D. SOMMER ◽  
Masahiko TANIGUCHI ◽  
Jonathan S. LINDSEY

2020 ◽  
Vol 21 (6) ◽  
pp. 2119 ◽  
Author(s):  
Mohammad Rezaul Karim ◽  
Ruonan Wang ◽  
Lu Zheng ◽  
Xiaoying Dong ◽  
Renfang Shen ◽  
...  

Nitrogen deficiency usually occurs along with aluminum toxicity in acidic soil, which is one of the major constraints for wheat production worldwide. In order to compare adaptive processes to N deficiency with different Al-tolerant wheat cultivars, we chose Atlas 66 and Scout 66 to comprehensively analyze the physiological responses to N deficiency, coupled with label-free mass spectrometry-based proteomics analysis. Results showed that both cultivars were comparable in most physiological indexes under N deficient conditions. However, the chlorophyll content in Scout 66 was higher than that of Atlas 66 under N deficiency. Further proteomic analysis identified 5592 and 5496 proteins in the leaves of Atlas 66 and Scout 66, respectively, of which 658 and 734 proteins were shown to significantly change in abundance upon N deficiency, respectively. The majority of the differentially expressed proteins were involved in cellular N compound metabolic process, photosynthesis, etc. Moreover, tetrapyrrole synthesis and sulfate assimilation were particularly enriched in Scout 66. Our findings provide evidence towards a better understanding of genotype-dependent responses under N deficiency which could help us to develop N efficient cultivars to various soil types.


2015 ◽  
Vol 112 (7) ◽  
pp. 2210-2215 ◽  
Author(s):  
Harry A. Dailey ◽  
Svetlana Gerdes ◽  
Tamara A. Dailey ◽  
Joseph S. Burch ◽  
John D. Phillips

It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes namedhemY,hemH, andhemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.


2013 ◽  
Vol 162 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Andreas S. Richter ◽  
Enrico Peter ◽  
Maxi Rothbart ◽  
Hagen Schlicke ◽  
Jouni Toivola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document