Temporal offsets between surface temperature, ice-rafting and bottom flow speed proxies in the glacial (MIS 3) northern North Atlantic

2012 ◽  
Vol 48 ◽  
pp. 43-53 ◽  
Author(s):  
Lukas Jonkers ◽  
Maarten A. Prins ◽  
Matthias Moros ◽  
Gert Jan Weltje ◽  
Simon R. Troelstra ◽  
...  
2010 ◽  
Vol 29 (15-16) ◽  
pp. 1791-1800 ◽  
Author(s):  
Lukas Jonkers ◽  
Matthias Moros ◽  
Maarten A. Prins ◽  
Trond Dokken ◽  
Carin Andersson Dahl ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 79-118
Author(s):  
J. Brandefelt ◽  
E. Kjellström ◽  
J.-O. Näslund ◽  
G. Strandberg ◽  
A. H. L. Voelker ◽  
...  

Abstract. We present a coupled global climate model (CGCM) simulation, integrated for 1500 years to quasi-equilibrium, of a stadial (cold period) within Marine Isotope Stage 3 (MIS 3). The simulated Greenland stadial 12 (GS12; ~44 ka BP) annual global mean surface temperature (Ts) is 5.5 °C higher than in the simulated recent past (RP) climate and 1.3 °C lower than in the simulated Last Glacial Maximum (LGM; 21 ka BP) climate. The simulated GS12 climate is evaluated against proxy data of sea surface temperature (SST). Simulated SSTs fall within the uncertainty range of the proxy SSTs for 30–50% of the sites depending on season. Proxy SSTs are higher than simulated SSTs in the Central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 years of integration. However, significant regional differences between the last century of the simulation and model years 500–599, with a maximum of 8 °C in temperature and 65% in precipitation in Southeastern Greenland in boreal winter, exist. Further, the agreement between simulated and proxy SST is improved from model years 500–599 to the last century of the simulation. El-Niño-Southern Oscillation (ENSO) teleconnections in mean sea level pressure (MSLP) are analysed for the last 300 years of the GS12, LGM and RP climate simulations. In agreement with an earlier study, we find that GS12 and LGM forcing and boundary conditions induce major modifications to ENSO teleconnections. However, significant differences in the teleconnection patterns are found between a 300-year time-slice starting after 195 model years and the last 300 years of the simulation. Thus we conclude that both the mean state and the variability of the simulated GS12 climate is dependent on the equilibration. The Atlantic Meridional Overturning Circulation (AMOC) slows down by 50% in the GS12 climate as compared to the RP climate. This slowdown is attained without freshwater forcing in the North Atlantic region, a method used in other studies to force an AMOC shutdown. The results presented here suggest that stadial climate, rather that interstadial climate, should be interpreted as a near-equilibrium MIS 3 climate, in contradiction to an earlier modelling study.


2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


Sign in / Sign up

Export Citation Format

Share Document