Constraining Holocene lake-level highstands on the Tibetan Plateau by 10Be exposure dating: a case study at Tangra Yumco, southern Tibet

2013 ◽  
Vol 82 ◽  
pp. 68-77 ◽  
Author(s):  
Eike F. Rades ◽  
Ralf Hetzel ◽  
Qiang Xu ◽  
Lin Ding
2015 ◽  
Vol 83 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Eike F. Rades ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen ◽  
Qiang Xu ◽  
Lin Ding

Many lakes on the Tibetan Plateau exhibit strandplains with a series of beach ridges extending high above the current lake levels. These beach ridges mark former lake highstands and therefore dating their formation allows the reconstruction of lake-level histories and environmental changes. In this study, we establish a lake-level chronology of Tangra Yum Co (fifth largest lake on the Tibetan Plateau) based on luminescence dating of feldspar from 17 beach-ridge samples. The samples were collected from two strandplains southeast and north of the lake and range in elevation from the current shore to 140 m above the present lake. Using a modified post-infrared IRSL protocol at 170°C we successfully minimised the anomalous fading in the feldspar IRSL signal, and obtained reliable dating results. The luminescence ages indicate three different stages of lake-level decline during the Holocene: (1) a phase of rapid decline (~ 50 m) from ~ 6.4 to ~ 4.5 ka, (2) a period of slow decline between ~ 4.5 and ~ 2.0 ka (~ 20 m), and (3) a fast decline by 70 m between ~ 2 ka and today. Our findings suggest a link between a decrease in monsoonal activity and lake-level decline since the early Holocene.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jiali Luo ◽  
Wenjun Liang ◽  
Pingping Xu ◽  
Haiyang Xue ◽  
Min Zhang ◽  
...  

Tropopause fold is the primary mechanism for stratosphere-troposphere exchange (STE) at the midlatitudes. Investigation of the features of tropopause folds over the Tibetan Plateau (TP) is important since the TP is a hotspot in global STE. In this study, we investigated seasonal features of the tropopause fold events over the TP using the 40-year ERA-Interim reanalysis data. The development of a tropopause folding case is specifically examined. The results show that shallow tropopause folds occur mostly in spring, while medium and deep folds occur mostly in winter. The multiyear mean monthly frequency of shallow tropopause folds over the TP reaches its maximum value of about 7% in May and then decreases gradually to its minimum value of 1% in August and increases again since September. Deep folds rarely occur in summer and autumn. Both the seasonal cycle and seasonal distribution of total tropopause folds over the TP are dominated by shallow folds. The relative high-frequency areas of medium and deep folds are located over the southern edge of the TP. The westerly jet movement controls the displacement of the high-frequency folding region over the TP. The region of high-frequency tropopause folds is located in the southern portion of the plateau in spring and moves northward in summer. The jet migrates back to the south in autumn and is located along about 30°N in winter, and the region where folds occur most frequently also shifts southward correspondingly. A medium fold event that occurred on 29 December 2018 is used to demonstrate the evolution of a tropopause fold case over the TP in winter; that is, the folding structure moves from west to east, the tropopause pressure is greater than 320 hPa over the folding region, while it is about 200 hPa in the surrounding areas, and the stratospheric air with high potential vorticity (PV) is transported from the high latitudes to the plateau by meridional winds. A trajectory model result verifies the transport pathway of the air parcels during the intrusion event.


2016 ◽  
Vol 10 (5) ◽  
pp. 504-521 ◽  
Author(s):  
Siyuan Wang ◽  
Hang Yin ◽  
Qichun Yang ◽  
Hui Yin ◽  
Xiaoyue Wang ◽  
...  

2020 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Ramona A.A. Schneider ◽  
Robin Blomdin ◽  
Natacha Gribenski ◽  
Marc W. Caffee ◽  
...  

<p>Paleoglaciological data is a crucial source of information towards insightful paleoclimate reconstructions by providing vital boundary conditions for regional and global climate models. In this context, the Third Pole Environment is considered a key region because it is highly sensitive to global climate change and its many glaciers constitute a diminishing but critical supply of freshwater to downstream communities in SE Asia. Despite its importance, extents of past glaciation on the Tibetan Plateau remain poorly documented or controversial largely because of the lack of well define glacial chronostratigraphies and reconstructions of former glacier extent. This study contributes to a better documentation of the extent and improved resolution of the timing of past glaciations on the southeastern margin of the Tibetan Plateau. We deploy a high-resolution TanDEM-X Digital Elevation Model (12 m resolution) to produce maps of glacial and proglacial fluvial landforms in unprecedented detail. Geomorphological and sedimentological field observations complement the mapping while cosmogenic nuclide exposure dating of quartz samples from boulders on end moraines detail the timing of local glacier expansion. Additionally, samples for optically stimulated luminescence dating were taken from extensive and distinct terraces located in pull-apart basins downstream of the end moraines to determine their formation time. We compare this new dataset with new and published electron spin resonance ages from terraces. Temporal coherence between the different chronometers strengthens the geochronological record while divergence highlights limitations in the applicability of the chronometers to glacial research or in our conceptual understanding of landscape changes in tectonic regions. Results highlight our current understanding of paleoglaciation, landscape development, and paleoclimate on the SE Tibetan Plateau.</p>


2014 ◽  
Vol 15 (3) ◽  
pp. 1312-1322 ◽  
Author(s):  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Liping Lei

Abstract Long-term changes in the water budget of lakes in the Tibetan Plateau due to climate change are of great interest not only for the importance of water management, but also for the critical challenge due to the lack of observations. In this paper, the water budget of Nam Co Lake during 1980–2010 is simulated using a dynamical monthly water balance model. The simulated lake level is in good agreement with field investigations and the remotely sensed lake level. The long-term hydrological simulation shows that from 1980 to 2010, lake level rose from 4718.34 to 4724.93 m, accompanied by an increase of lake water storage volume from 77.33 × 109 to 83.66 × 109 m3. For the net lake level rise (5.93 m) during the period 1980–2010, the proportional contributions of rainfall–runoff, glacier melt, precipitation on the lake, lake percolation, and evaporation are 104.7%, 56.6%, 41.7%, −22.2%, and −80.9%, respectively. A positive but diminishing annual water surplus is found in Nam Co Lake, implying a continuous but slowing rise in lake level as a hydrological consequence of climate change.


2021 ◽  
Vol 21 (1) ◽  
pp. 393-413
Author(s):  
Shuo Liu ◽  
Shuangxi Fang ◽  
Peng Liu ◽  
Miao Liang ◽  
Minrui Guo ◽  
...  

Abstract. A 26-year, long-term record of atmospheric methane (CH4) measured in situ at the Mount Waliguan (WLG) station, the only World Meteorological Organization (WMO) and Global Atmosphere Watch (GAW) global station in inland Eurasia, is presented. Overall, a nearly continuous increase in atmospheric CH4 was observed at WLG, with a yearly growth rate of 5.1±0.1 parts per billion (ppb) per year during 1994–2019, except for some particular periods with near-zero or negative values, e.g., 1999–2000 and 2004–2006. The average CH4 mole fraction was only 1799.0±0.4 ppb in 1994 but increased to about 133 ppb and reached a historic level of 1932.0±0.1 ppb in 2019. The case study in the Tibetan Plateau showed that the atmospheric CH4 increased rapidly. During some special periods, it is even larger than that of city regions (e.g., 6.7±0.2 ppb yr−1 in 2003–2007). Generally, the characteristics of CH4 varied in different observing periods as follows: (i) the diurnal cycle has become apparent and the amplitudes of the diurnal or seasonal cycles increased over time; (ii) the wind sectors with elevated CH4 mole fractions switched from ENE-E-ESE-SE-SSE sectors (wind directions) in early periods to NNE-NE-ENE-E sectors in later years; (iii) the area of source regions increased as the years progressed, and strong sources shifted from northeast (city regions) to southwest (northern India); and (iv) the annual growth rates in recent years (e.g., 2008–2019) were significantly larger than those in the early periods (e.g., 1994–2007).


Sign in / Sign up

Export Citation Format

Share Document