Contrasting responses to long-term climate change of carbon flows to benthic consumers in two different sized lakes in the Baltic area.

2018 ◽  
Vol 187 ◽  
pp. 168-176 ◽  
Author(s):  
Simon Belle ◽  
Rene Freiberg ◽  
Anneli Poska ◽  
Helen Agasild ◽  
Tiiu Alliksaar ◽  
...  
2018 ◽  
Author(s):  
Robinson Hordoir ◽  
Lars Axell ◽  
Anders Höglund ◽  
Christian Dieterich ◽  
Filippa Fransner ◽  
...  

Abstract. We present Nemo-Nordic, a Baltic & North Sea model based on the NEMO ocean engine. Surrounded by highly industrialised countries, the Baltic and North seas, and their assets associated with shipping, fishing and tourism; are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts, and enabling climatic studies, are important tools for the shipping infrastructure and to get a better understanding of effects of climate change on the marine ecosystems. Nemo-Nordic is intended to come as a tool for both short term and long term simulations, and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain, and the inclusions of the two seas, are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short term capabilities of the model are presented, and especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer time scale, with a focus on the Major Baltic Inflows and the variability of deep water salinity in the Baltic Sea.


AMBIO ◽  
2015 ◽  
Vol 44 (S3) ◽  
pp. 381-391 ◽  
Author(s):  
Arvid Bring ◽  
Peter Rogberg ◽  
Georgia Destouni

2019 ◽  
Vol 12 (1) ◽  
pp. 363-386 ◽  
Author(s):  
Robinson Hordoir ◽  
Lars Axell ◽  
Anders Höglund ◽  
Christian Dieterich ◽  
Filippa Fransner ◽  
...  

Abstract. We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea.


2019 ◽  
Vol 68 (1-2) ◽  
pp. 83-93 ◽  
Author(s):  
Lars Hedenäs ◽  
Irene Bisang

Abstract In the Baltic area, the long-lived dioicous wetland moss Drepanocladus turgescens (T.Jensen) Broth. produces sporophytes rarely and at irregular intervals. Based on surveys of sporophyte occurrences at 13 sites in two regions in northern Gotland (Sweden) during three to five years, we ask: (1) Is sporophyte formation associated with precipitation and a precipitation index that considers the dry periods during July-August of the preceding year, when gametangia are formed and fertilization occurs? (2) Does the estimated spore output suffice for the species’ long-term persistence of the (Northern) European population species? In one of the study regions, where D. turgescens occurs in depressions, sporophyte formation was associated with the two precipitation parameters. In the other study region, with relatively higher precipitation and exposed occurrences on a slightly sloping bedrock with very little accumulated soil, no such association existed. We suggest that this lack of weather effects results from that the exposed rock habitat requires longer continuously wet periods than the depression habitat to allow for gametangia initiation and development, and fertilisation. Average spore production for six spore capsules, from three Gotland localities was 181,000. Based on the sporophyte counts during the survey years, we estimated the total reproductive output as 411.5 million spores in 2013, and 42.5 million in 2015, in the two respective study regions. Taken together with data on haplotype patterns and considering observations on recent colonisations, we argue that such a relatively low and episodic regional spore production is sufficient to maintain global populations of long-lived species, even if these occur in specialized and geographically restricted habitats.


2020 ◽  
Vol 7 (2) ◽  
pp. 191754
Author(s):  
Jens Rydell ◽  
Marcus Elfström ◽  
Johan Eklöf ◽  
Sonia Sánchez-Navarro

We monitored northern bat Eptesicus nilssonii (Keyserling & Blasius, 1839) acoustically along a 27 km road transect at weekly intervals in 1988, 1989 and 1990, and again in 2016 and 2017. The methodology of data collection and the transect were the same throughout, except that the insect-attracting mercury-vapour street-lights along parts of the road were replaced by sodium lights between the two survey periods. Counts along sections of the transect with and without street-lights were analysed separately. The frequency of bat encounters in unlit sections showed an average decline of 3.0% per year, corresponding to a reduction of 59% between 1988 and 2017. Sections with street-lights showed an 85% decline over the same period (6.3% per year). The decline represents a real reduction in the abundance of bats rather than an artefact of changed distribution of bats away from roads. Our study conforms with another long-term survey of the same species on the Baltic island of Gotland. Our results agree with predictions based on climate change models. They also indicate that the decline was caused directly by the disuse of the insect-attracting mercury-vapour street-lights, which may have resulted in lower availability of preferred prey (moths). In the 1980s, E. nilssonii was considered the most common bat in Sweden, but the subsequent decline would rather qualify it for vulnerable or endangered status in the national Red List of Threatened Species.


2021 ◽  
Vol 1 ◽  
pp. 9
Author(s):  
Fred Sanders ◽  
Hugo Sanders ◽  
Karen Jonkers

Gdansk and the city Haarlem in the Netherlands share a long-term relationship that started with the establishment of Dutch Mennonites in the Vistula delta in the 16th Century. A small city was founded called Holland and these immigrants reclaimed the surrounding delta area. This area of 1,000 km2, with hundreds of small ‘polders’ separated and defended by 17,000 dikes, has become an important agricultural area for the whole of Poland, similar to the Rhine delta in the Netherlands. Despite these civil defense works in the past, both coastlines nevertheless experienced floods: the Dutch southwest coast in 1953, Dutch Rhine riverbank in 1993 and 1995, and Vistula delta recently in 2001. Climate change figures show that both the Polish Gdansk and Dutch Rhine deltas will suffer flooding with sea level rises, with accumulating severe rainfall accompanied by high river levels. Although both the Baltic Sea and the North Sea are next to each other and coupled to the Atlantic Ocean, there are differences in how soon or severely climate change trends, such as seawater level rises and water thrust, become critical. From cross-over analysis it can be concluded that Poland and the Netherlands have a virtually identical approach when it comes to climate change impacts on their current situation. With regard to long-term climate change, the Netherlands is exploring the future in a planned manner with the development of new scenarios for the protection of cities. The enclosure of the Baltic Sea, on the other hand, probably offers more options for exchanging knowledge with neighbor states. In that respect, the Netherlands is more isolated in their situation with the North Sea and its Delta Plan. The situation of Gdansk and Rotterdam is quite similar; these cities can take steps forward by learning from each other’s actions.


Author(s):  
Nguyen Thi Thuc An ◽  
Dau Kieu Ngoc Anh

The 2018 Nobel Economics Prize was awarded to two American economists - William D. Nordhaus and Paul M. Romer - who designed methods for better assessing environmental issues and technological advances on growth. This year’s Laureates, Nordhaus was the first person to create an intergrated model to assess interactions between society and nature and Romer laid the foundation for what is now called endogenous growth theory. According to the Swedish Royal Academy of Sciences, these two macroeconomists’ research have helped “significantly broaden the scope of economic analysis by constructing models that explain how the market economy interacts with nature and knowledge” which integrates climate change measures into long-term sustainable economic growth. Keywords Nobel in economics, William D. Nordhaus, Paul M. Romer, climate change, endogenous growth theory, economic growth References [1] Y Vân (2018), “Lý lịch 'khủng' của hai nhà khoa học vừa giành giải Nobel Kinh tế 2018”, Vietnambiz, đăng tải ngày 08/10/2018, https://vietnambiz.vn/ly-lich-khung-cua-hai-nha-khoa-hoc-vua-gianh-giai-nobel-kinh-te-2018-95776.html[2] Jonas O. Bergman, Rich Miller (2018), “Nordhaus, Romer Win Nobel for Thinking on Climate, Innovation”, đăng tải ngày 8/10/2018, https://www.bloomberg.com/news/articles/2018-10-08/nordhaus-romer-win-2018-nobel-prize-in-economic-sciences [3] Antonin Pottier (2018), “Giải Nobel” William Nordhaus có thật sự nghiêm túc?”, Nguyễn Đôn Phước dịch, đăng tải ngày 11/10/2018, http://www.phantichkinhte123.com/2018/10/giai-nobel-william-nordhaus-co-that-su.html[4] Thăng Điệp (2018), “Giải Nobel kinh tế 2018 về tay hai người Mỹ”, đăng tải ngày 8/10/2018, http://vneconomy.vn/giai-nobel-kinh-te-2018-ve-tay-hai-nguoi-my-20181008185809239.htm[5] Lars P. Syll (2018), “Cuối cùng - Paul Romer cũng có được giải thưởng Nobel”, Huỳnh Thiện Quốc Việt dịch, đăng tải ngày 14/10/2018, http://www.phantichkinhte123.com/2018/10/cuoi-cung-paul-romer-cung-co-uoc-giai.html[6] Phương Võ (2018), “Nobel Kinh tế 2018: Chạm tới bài toán khó của thời đại”, đăng tải ngày 9/10/2018, https://nld.com.vn/thoi-su-quoc-te/nobel-kinh-te-2018-cham-toi-bai-toan-kho-cua-thoi-dai-20181008221734228.htm[7] Đông Phong (2018), “Nobel Kinh tế cho giải pháp phát triển bền vững và phúc lợi người dân”, đăng tải ngày 8/10/2018, https://news.zing.vn/nobel-kinh-te-cho-giai-phap-phat-trien-ben-vung-va-phuc-loi-nguoi-dan-post882860.html[8] Thanh Trúc (2018), “Giải Nobel kinh tế 2018: Thay đổi tư duy về biến đổi khí hậu”, https://tusach.thuvienkhoahoc.com/wiki/Gi%E1%BA%A3i_Nobel_kinh_t%E1%BA%BF_2018:_Thay_%C4%91%E1%BB%95i_t%C6%B0_duy_v%E1%BB%81_bi%E1%BA%BFn_%C4%91%E1%BB%95i_kh%C3%AD_h%E1%BA%ADu[9] Cẩm Anh (2018), “Nobel kinh tế 2018: Lời giải cho tăng trưởng kinh tế bền vững”, đăng tải ngày 11/10/2018, http://enternews.vn/nobel-kinh-te-2018-loi-giai-cho-tang-truong-kinh-te-ben-vung-137600.html.


Sign in / Sign up

Export Citation Format

Share Document