Lead-rubber shielding effect on radiation dose to the gonads from a bilateral hand X-ray examination

Radiography ◽  
2022 ◽  
Author(s):  
D. Welborn ◽  
P. Lockwood
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


2021 ◽  
pp. 1-12
Author(s):  
Ignacio O. Romero ◽  
Changqing Li

BACKGROUND: Pencil beam X-ray luminescence computed tomography (XLCT) imaging provides superior spatial resolution than other imaging geometries like sheet beam and cone beam geometries. However, the pencil beam geometry suffers from long scan times, resulting in concerns overdose which discourages the use of pencil beam XLCT. OBJECTIVE: The dose deposited in pencil beam XLCT imaging was investigated to estimate the dose from one angular projection scan with three different X-ray sources. The dose deposited in a typical small animal XLCT imaging was investigated. METHODS: A Monte Carlo simulation platform, GATE (Geant4 Application for Tomographic Emission) was used to estimate the dose from one angular projection scan of a mouse leg model with three different X-ray sources. Dose estimations from a six angular projection scan by three different X-ray source energies were performed in GATE on a mouse trunk model composed of muscle, spine bone, and a tumor. RESULTS: With the Sigray source, the bone marrow of mouse leg was estimated to have a radiation dose of 44 mGy for a typical XLCT imaging with six angular projections, a scan step size of 100 micrometers, and 106 X-ray photons per linear scan. With the Sigray X-ray source and the typical XLCT scanning parameters, we estimated the dose of spine bone, muscle tissues, and tumor structures of the mouse trunk were 38.49 mGy, 15.07 mGy, and 16.87 mGy, respectively. CONCLUSION: Our results indicate that an X-ray benchtop source (like the X-ray source from Sigray Inc.) with high brilliance and quasi-monochromatic properties can reduce dose concerns with the pencil beam geometry. Findings of this work can be applicable to other imaging modalities like X-ray fluorescence computed tomography if the imaging protocol consists of the pencil beam geometry.


2017 ◽  
Vol 27 (01n02) ◽  
pp. 37-42
Author(s):  
T. Segawa ◽  
S. Harada ◽  
S. Ehara ◽  
K. Ishii ◽  
T. Sato ◽  
...  

Encapsulated protamine-hyaluronic acid particles containing carboplatin were prepared and their ability to release carboplatin was tested in vivo. Protamine–hyaluronic acid particles containing carboplatin were prepared by mixing protamine (1.6 mg) and hyaluronic acid (1.28 mg) into a 5 mg/mL carboplatin solution for 30 min at room temperature. A 1 mL solution of protamine–hyaluronic acid particles was poured into an ampule of COATSOME[Formula: see text] EL-010 (Nichiyu, Tokyo, Japan), shaken three times by hand, and allowed to incubate at room temperature for 15 min. Following that, 10 or 20 Gy of 100 kiloelectronvolt (KeV) soft X-ray was applied. The release of carboplatin was imaged using a microparticle-induced X-ray emission (PIXE) camera. The amount of carboplatin released was expressed as the amount of platinum released and measured via quantitative micro-PIXE analysis. The diameter of the generated encapsulated particles measured [Formula: see text] nm (mean ± standard error). The release of carboplatin from the encapsulated protamine–hyaluronic acid particles was observed under a micro-PIXE camera. The amount of carboplatin released was [Formula: see text] under 10 Gy of radiation, and [Formula: see text] under 20 Gy of radiation, which was a sufficient dose for cancer treatment. However, 10 or 20 Gy of radiation is much greater than the dose used for clinical cancer treatment (2 Gy). Further research to reduce the radiation dose to 2 Gy in order to release sufficient carboplatin for cancer treatment is required.


2014 ◽  
Vol 880 ◽  
pp. 53-56 ◽  
Author(s):  
Sergei Stuchebrov ◽  
Andrey Batranin ◽  
Dan Verigin ◽  
Yelena Lukyanenko ◽  
Maria Siniagina ◽  
...  

Two setups for X-ray visualization of objects interior structure were designed and assembled in TPU. These radiographic systems are based on linear gas-discharge and GaAs semiconductor detectors. During investigation of biological object control of radiation doses has a high priority. In this report radiation dose calculations in X-ray visualization are presented. These calculation also includes dose calculations of sinograms which are used for reconstruction of tomography slices.


2010 ◽  
Vol 51 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Peter Björkdahl ◽  
Ulf Nyman

Background: Concern has been raised regarding the mounting collective radiation doses from computed tomography (CT), increasing the risk of radiation-induced cancers in exposed populations. Purpose: To compare radiation dose and image quality in a chest phantom and in patients for the diagnosis of pulmonary embolism (PE) at 100 and 120 peak kilovoltage (kVp) using 16-multichannel detector computed tomography (MDCT). Material and Methods: A 20-ml syringe containing 12 mg I/ml was scanned in a chest phantom at 100/120 kVp and 25 milliampere seconds (mAs). Consecutive patients underwent 100 kVp ( n = 50) and 120 kVp ( n = 50) 16-MDCT using a “quality reference” effective mAs of 100, 300 mg I/kg, and a 12-s injection duration. Attenuation (CT number), image noise (1 standard deviation), and contrast-to-noise ratio (CNR; fresh clot = 70 HU) of the contrast medium syringe and pulmonary arteries were evaluated on 3-mm-thick slices. Subjective image quality was assessed. Computed tomography dose index (CTDIvol) and dose–length product (DLP) were presented by the CT software, and effective dose was estimated. Results: Mean values in the chest phantom and patients changed as follows when X-ray tube potential decreased from 120 to 100 kVp: attenuation +23% and +40%, noise +38% and +48%, CNR −6% and 0%, and CTDIvol −38% and −40%, respectively. Mean DLP and effective dose in the patients decreased by 42% and 45%, respectively. Subjective image quality was excellent or adequate in 49/48 patients at 100/120 kVp. No patient with a negative CT had any thromboembolism diagnosed during 3-month follow-up. Conclusion: By reducing X-ray tube potential from 120 to 100 kVp, while keeping all other scanning parameters unchanged, the radiation dose to the patient may be almost halved without deterioration of diagnostic quality, which may be of particular benefit in young individuals.


Author(s):  
Yuta Matsunaga ◽  
Tomonobu Haba ◽  
Masanao Kobayashi ◽  
Shoichi Suzuki ◽  
Yasuki Asada ◽  
...  
Keyword(s):  

Author(s):  
Jenna Ruth Tugwell-Allsup ◽  
Rhys Wyn Morris ◽  
Kate Thomas ◽  
Richard Hibbs ◽  
Andrew England

Objectives: Copper filtration removes lower energy X-ray photons, which do not enhance image quality but would otherwise contribute to patient dose. This study explores the use of additional copper filtration for neonatal mobile chest imaging. Methods: A controlled factorial-designed experiment was used to determine the effect of independent variables on image quality and radiation dose. These variables included: copper filtration (0Cu, 0.1Cu and 0.2Cu), exposure factors, SID and image receptor position (direct +tray). Image quality was evaluated using absolute visual grading analysis (VGA) and contrast-to-noise ratio (CNR) and entrance surface dose (ESD) was derived using an ionising chamber within the central X-ray beam. Results: VGA, CNR and ESD significantly reduced (p < 0.01) when using added copper filtration. For 0.1Cu, the percentage reduction was much greater for ESD (60%) than for VGA (14%) and CNR (20%), respectively. When compared to the optimal combinations of parameters for incubator imaging using no copper filtration, an increase in kV and mAs when using 0.1mmCu resulted in better image quality at the same radiation dose (direct) or, equal image quality at reduced dose (in-tray). The use of 0.1mmCu for neonatal chest imaging with a corresponding increase in kV and mAs is therefore recommended. Conclusions: Using additional copper filtration significantly reduces radiation dose (at increased mAs) without a detrimental effect on image quality. Advances in knowledge: This is the first study, using an anthropomorphic phantom, to explore the use of additional Cu for DR neonatal chest imaging and therefore helps inform practice to standardise and optimise this imaging examination.


Sign in / Sign up

Export Citation Format

Share Document