scholarly journals Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson's disease

Redox Biology ◽  
2021 ◽  
Vol 38 ◽  
pp. 101795
Author(s):  
De-Hai Gou ◽  
Ting-Ting Huang ◽  
Wen Li ◽  
Xin-Di Gao ◽  
Caroline Haikal ◽  
...  
2009 ◽  
Vol 25 (1) ◽  
pp. 25-39 ◽  
Author(s):  
CA Dodd ◽  
BG Klein

The pyrethroid insecticide permethrin and the organophosphate insecticide chlorpyrifos can experimentally produce Parkinson’s disease (PD)-associated changes in the dopaminergic nigrostriatal pathway, short of frank degeneration, although at doses considerably higher than from a likely environmental exposure. The ability of permethrin (200 mg/kg), chlorpyrifos (50 mg/kg), or combined permethrin + chlorpyrifos to facilitate nigrostriatal damage in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg) C57BL/6 mouse model of PD was investigated in three separate experiments. Tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) immunohistochemistry assessed nigrostriatal degeneration or nigrostriatal damage more subtle than frank degeneration. Four fields in the dorsolateral caudate-putamen were examined at two rostrocaudal locations. The dopaminergic neurotoxin MPTP decreased striatal TH immunopositive neuropil and increased GFAP immunopositive neuropil. Neither permethrin nor chlorpyrifos, alone or in combination, altered the effects of MPTP upon TH or GFAP immunostaining. Permethrin alone increased striatal GFAP immunopositive neuropil but not when combined with chlorpyrifos treatment. Therefore, combined administration of the two insecticides appeared to protect against an increase in a neuropathological indicator of striatal damage seen with permethrin treatment alone. Differences compared with analysis of entire striatum emphasize the value of varying the topographic focus used to assess nigrostriatal degeneration in studies of insecticides in PD.


2011 ◽  
Vol 207 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Mikhail S. Shchepinov ◽  
Vivian P. Chou ◽  
Erik Pollock ◽  
J. William Langston ◽  
Charles R. Cantor ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Karoline Knudsen ◽  
Tatyana D. Fedorova ◽  
Jacob Horsager ◽  
Katrine B. Andersen ◽  
Casper Skjærbæk ◽  
...  

Background: We have hypothesized that Parkinson’s disease (PD) comprises two subtypes. Brain-first, where pathogenic α-synuclein initially forms unilaterally in one hemisphere leading to asymmetric nigrostriatal degeneration, and body-first with initial enteric pathology, which spreads through overlapping vagal innervation leading to more symmetric brainstem involvement and hence more symmetric nigrostriatal degeneration. Isolated REM sleep behaviour disorder has been identified as a strong marker of the body-first type. Objective: To analyse striatal asymmetry in [18F]FDOPA PET and [123I]FP-CIT DaT SPECT data from iRBD patients, de novo PD patients with RBD (PD +RBD) and de novo PD patients without RBD (PD - RBD). These groups were defined as prodromal body-first, de novo body-first, and de novo brain-first, respectively. Methods: We included [18F]FDOPA PET scans from 21 iRBD patients, 11 de novo PD +RBD, 22 de novo PD - RBD, and 18 controls subjects. Also, [123I]FP-CIT DaT SPECT data from iRBD and de novo PD patients with unknown RBD status from the PPPMI dataset was analysed. Lowest putamen specific binding ratio and putamen asymmetry index (AI) was defined. Results: Nigrostriatal degeneration was significantly more symmetric in patients with RBD versus patients without RBD or with unknown RBD status in both FDOPA (p = 0.001) and DaT SPECT (p = 0.001) datasets. Conclusion: iRBD subjects and de novo PD +RBD patients present with significantly more symmetric nigrostriatal dopaminergic degeneration compared to de novo PD - RBD patients. The results support the hypothesis that body-first PD is characterized by more symmetric distribution most likely due to more symmetric propagation of pathogenic α-synuclein compared to brain-first PD.


2021 ◽  
Vol 153 ◽  
pp. 105313
Author(s):  
Mei Jiang ◽  
Hai-Tao Tu ◽  
Ke Zhang ◽  
Wei Zhang ◽  
Wei-Ping Yu ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


Sign in / Sign up

Export Citation Format

Share Document