Electronic band-offsets across Cu2O/BaZrO3 heterojunction and its stable photo-electro-chemical response: First-principles theoretical analysis and experimental optimization

2017 ◽  
Vol 113 ◽  
pp. 503-511 ◽  
Author(s):  
Dipika Sharma ◽  
Rishibrind Kumar Upadhyay ◽  
Biswarup Satpati ◽  
Vibha R. Satsangi ◽  
Rohit Shrivastav ◽  
...  
2018 ◽  
Vol 32 (30) ◽  
pp. 1850337
Author(s):  
Shahid Ullah ◽  
Hayat Ullah ◽  
Abdullah Yar ◽  
Sikander Azam ◽  
A. Laref

In this paper, we study the optoelectronic properties of quaternary metal chalcogenide semiconductor ABaMQ4 (A = Rb, Cs; M = P, V; and Q = S) compounds using state-of-the-art density functional theory (DFT) with TB-mBJ approximation for the treatment of exchange-correlation energy. In particular, the electronic and optical properties of the relaxed geometries of these compounds are investigated. Our first-principles ab-initio calculations show that the CsBaPS4 and RbBaPS4 compounds have direct bandgaps whereas the CsBaVS4 compound exhibits indirect bandgap nature. Importantly, the theoretically calculated values of the bandgaps of the compounds are consistent with experiment. Furthermore, our analysis of the electronic charge densities of these compounds indicates that the above quaternary chalcogenides have mixed covalent and ionic bonding characters. The effective masses of these compounds are also calculated which provide very useful information about the band structure and transport characteristics of the investigated compounds. Similarly, high absorptivity in the visible and ultraviolet regions of the electromagnetic spectrum possibly predicts and indicates the importance of these materials for potential optoelectronic applications in this range.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1445
Author(s):  
Tahani A. Alrebdi ◽  
Mohammed Benali Kanoun ◽  
Souraya Goumri-Said

We investigated structure optimization, mechanical stability, electronic and bonding properties of the nanolaminate compounds Ti2PbC, Zr2PbC, and Hf2PbC using the first-principles calculations. These structures display nanolaminated edifices where MC layers are interleaved with Pb. The calculation of formation energies, elastic moduli and phonons reveal that all MAX phase systems are exothermic, and are intrinsically and dynamically stable at zero and under pressure. The mechanical and thermal properties are reported with fundamental insights. Results of bulk modulus and shear modulus show that the investigated compounds display a remarkable hardness. The elastic constants C11 and C33 rise more quickly with an increase in pressure than that of other elastic constants. Electronic and bonding properties are investigated through the calculation of electronic band structure, density of states, and charge densities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Min-Ye Zhang ◽  
Hong Jiang

The pyrite and marcasite polymorphs of FeS2 have attracted considerable interests for their potential applications in optoelectronic devices because of their appropriate electronic and optical properties. Controversies regarding their fundamental band gaps remain in both experimental and theoretical materials research of FeS2. In this work, we present a systematic theoretical investigation into the electronic band structures of the two polymorphs by using many-body perturbation theory with the GW approximation implemented in the full-potential linearized augmented plane waves (FP-LAPW) framework. By comparing the quasi-particle (QP) band structures computed with the conventional LAPW basis and the one extended by high-energy local orbitals (HLOs), denoted as LAPW + HLOs, we find that one-shot or partially self-consistent GW (G0W0 and GW0, respectively) on top of the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation with a converged LAPW + HLOs basis is able to remedy the artifact reported in the previous GW calculations, and leads to overall good agreement with experiment for the fundamental band gaps of the two polymorphs. Density of states calculated from G0W0@PBE with the converged LAPW + HLOs basis agrees well with the energy distribution curves from photo-electron spectroscopy for pyrite. We have also investigated the performances of several hybrid functionals, which were previously shown to be able to predict band gaps of many insulating systems with accuracy close or comparable to GW. It is shown that the hybrid functionals considered in general fail badly to describe the band structures of FeS2 polymorphs. This work indicates that accurate prediction of electronic band structure of FeS2 poses a stringent test on state-of-the-art first-principles approaches, and the G0W0 method based on semi-local approximation performs well for this difficult system if it is practiced with well-converged numerical accuracy.


2013 ◽  
Vol 87 (19) ◽  
Author(s):  
Prokop Hapala ◽  
Kateřina Kůsová ◽  
Ivan Pelant ◽  
Pavel Jelínek

2017 ◽  
Vol 8 (9) ◽  
pp. 1979-1985 ◽  
Author(s):  
Franck Bertorelle ◽  
Isabelle Russier-Antoine ◽  
Nathalie Calin ◽  
Clothilde Comby-Zerbino ◽  
Amina Bensalah-Ledoux ◽  
...  

Author(s):  
Iyyappa Rajan Panneerselvam ◽  
Pranay Chakraborty ◽  
qiong nian ◽  
Yongfeng Lu ◽  
Yiliang Liao ◽  
...  

Abstract The rational design of the electronic band structures and the associated properties (e.g., optical) of advanced materials has remained challenging for crucial applications in optoelectronics, solar desalination, advanced manufacturing technologies, etc. In this work, using first-principles calculations, we studied the prospects of tuning the absorption spectra of graphene via defect engineering, i.e., chemical doping and oxidation. Our computational analysis shows that graphene functionalization with single hydroxyl and carboxylic acid fails to open a band gap in graphene. While single epoxide functionalization successfully opens a bandgap in graphene and increases absorptivity, however, other optical properties such as reflection, transmission, and dielectric constants are significantly altered. Boron and nitrogen dopants lead to p- and n-type doping, respectively, while fluorine dopants or a single-carbon atomic vacancy cannot create a significant bandgap in graphene. By rigorously considering the spin-polarization effect, we find that titanium, zirconium, and hafnium dopants can create a bandgap in graphene via an induced flat band around the Fermi level as well as the collapse of the Dirac cone. In addition, silicon, germanium, and tin dopants are also effective in improving the optical characteristics. Our work is important for future experimental work on graphene for laser and optical processing applications.


Author(s):  
Rashid Khan ◽  
Kaleem Ur Rahman ◽  
Qingmin Zhang ◽  
Altaf Ur Rahman ◽  
Sikander Azam ◽  
...  

Abstract Using first-principles calculations, the effects of Yb$^{2+}$ substitutional doping on structural, electronic, and optical properties of a series of perovskite compounds CsCaX$_3$ (X: Cl, Br, I), have been investigated. We employed generalized gradient approximation (GGA) and HSE hybrid functional to study the electronic and optical properties. A series of pristine CsCaX$_3$(X: Cl, Br, I) is characterized as a non-magnetic insulator with indirect bandgap perovskite materials. These phosphor materials are suitable candidates for doping with lanthanide series elements to tune their electronic bandgaps according to our requirements because of their wide bandgaps. The calculated electronic bandgaps of CsCaX$_3$ (X: Cl, Br, I) are 3.7 eV(GGA) and 4.5 eV (HSE) for CsCaI$_3$, 4.5 eV (GGA) and 5.3 eV (HSE) for CsCaBr$_3$, and 5.4 eV (GGA) and 6.4 eV (HSE) for CsCaCl$_3$. According to formation energies, the Yb$^{2+}$ doped at the Ca-site is thermodynamically more stable as compared to all possible atomic sites. The electronic band structures show that the Yb$^{2+}$ doping induces defective states within the bandgaps of pristine CsCaX$_3$. As a result, the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) become the direct bandgap semiconductors. The defective states above the VBM are produced due to the $f$-orbital of the Yb atom. The impurity states near the CBM are induced due to the major contribution of $d$-orbital of the Yb atom and the minor contribution of $s$-orbital of the Cs atom. The real and imaginary parts of the dielectric function, optical reflectivity, electron energy loss spectrum, extinction coefficient, and refractive index of pristine and Yb$^{2+}$ doped CsCaX$_3$ were studied. The optical dispersion results of dielectric susceptibility closely match their relevant electronic structure and align with previously reported theoretical and experimental data. We conclude that the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) are appealing candidates for optoelectronic devices.


Author(s):  
Tai Ma ◽  
Jia Wang ◽  
Xu Li ◽  
Min Pu

Two-dimensional (2D) materials with robust ferromagnetism properties have high potentials for application in the field of spintronics. However, extensively pursued 2D sheets, including pure graphene, monolayer BN, and layered transition metal dichalcogenides, are either nonmagnetic or weakly magnetic. The elastic, electronic and magnetic properties of monolayer CrN are calculated using the plane wave pseudo potential method based on first-principles density function theory. Upon determining through calculation that the structure of the monolayer CrN nanosheet is stable, its layer modulus [Formula: see text] shows that its strain resistance is stronger than that of graphene. Through strain analysis, materials with a monolayer CrN type of structure can be obtained. It is determined that 10% of the change in equilibrium area is still applicable to the 2D EOS, showing that this structure is quite stable. The spin-polarized electronic band structure is also calculated under different plane symmetry strains. The plane strain can be used to effectively adjust the metallic and magnetic properties of the material. Analyses of the band structure and density of states reveal that this material is half-metallic, where the origin of the ferromagnetism is related to [Formula: see text]–[Formula: see text] exchange interactions between the Cr and N atoms. Monolayer CrN has semimetallic properties and strong ferromagnetic (FM) properties. The FM effect can enhance the stability of the material. The results show that monolayer CrN is a semimetallic material with good elastic properties and a strong FM property. This material is therefore expected to have good application rospects in the field of spin electronics.


Sign in / Sign up

Export Citation Format

Share Document