scholarly journals Multi-scale ocean response to a large tidal stream turbine array

2017 ◽  
Vol 114 ◽  
pp. 1160-1179 ◽  
Author(s):  
Michela De Dominicis ◽  
Rory O'Hara Murray ◽  
Judith Wolf
2021 ◽  
Vol 111 ◽  
pp. 102644
Author(s):  
Zhi Zhang ◽  
Yuquan Zhang ◽  
Jisheng Zhang ◽  
Yuan Zheng ◽  
Wei Zang ◽  
...  

Author(s):  
Seiji Shimizu ◽  
Masayuki Fujii ◽  
Tetsuya Sumida ◽  
Kenji Sasa ◽  
Yasuhiro Kimura ◽  
...  

Darrieus type vertical axis water turbine in a cylindrical shape which consists of some straight blades is simple, efficient and easy to install a generator upward. However, it has difficulty in starting revolution. As a method to cope with such a problem, a starting revolution assist mechanism was fabricated and set on a prototype of the turbine. Assist experiment was carried out. It resulted helping well the starting revolution. The improved prototype of tidal stream turbine can generate 1.4 W under a water flow of 1 m/s where impossible to self-start. Besides that, Darrieus water turbine’s generating torque property was investigated by the famous original experimental data of lift coefficient Cl and drag coefficient Cd for straight blades of NACA63 3-018 cross section. It was found that setting two or four blades in a turbine would help to improve the difficulty of starting revolution.


2012 ◽  
Vol 229-231 ◽  
pp. 2478-2480
Author(s):  
Bin Guo ◽  
Da Zheng Wang ◽  
Jun Wei Zhou

In this paper, the tidal stream turbine blade is designed by using blade element momentum (BEM) theory. The bidirectional airfoil is created derived from NACA airfoil. Ansys-CFX is used to predict the hydrodynamic performance of this bidirectional airfoil, and it turns out that the bidirectional airfoil works well at both of the tidal current directions. A test turbine named rotor 2 is used, and a comparison is made between experimental results of the test turbine and numerical prediction results to prove the correctness of the numerical method. The power coefficient of bidirectional tidal stream turbine obtained by CFD method is 39.36% at the design tip speed ratio.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 79325-79337 ◽  
Author(s):  
Yuquan Zhang ◽  
Emmanuel Fernandez-Rodriguez ◽  
Jinhai Zheng ◽  
Yuan Zheng ◽  
Jisheng Zhang ◽  
...  

2020 ◽  
Vol 147 (4) ◽  
pp. 2547-2555 ◽  
Author(s):  
Denise Risch ◽  
Nienke van Geel ◽  
Douglas Gillespie ◽  
Ben Wilson

2017 ◽  
Vol 196 ◽  
pp. 82-96 ◽  
Author(s):  
Yaling Chen ◽  
Binliang Lin ◽  
Jie Lin ◽  
Shujie Wang

2016 ◽  
Vol 97 ◽  
pp. 784-797 ◽  
Author(s):  
Jeonghwa Seo ◽  
Seung-Jae Lee ◽  
Woo-Sik Choi ◽  
Sung Taek Park ◽  
Shin Hyung Rhee

Author(s):  
D. S. Coles ◽  
L. S. Blunden ◽  
A. S. Bahaj

This research provides an updated energy yield assessment for a large tidal stream turbine array in the Alderney Race. The original array energy yield estimate was presented in 2004. Enhancements to this original work are made through the use of a validated two-dimensional hydrodynamic model, enabling the resolution of flow modelling to be improved and the impacts of array blockage to be quantified. Results show that a range of turbine designs (i.e. rotor diameter and power capacity) are needed for large-scale development, given the spatial variation in bathymetry and flow across the Alderney Race. Array blockage causes a reduction in flow speeds in the array of up to 2.5 m s −1 , increased flow speeds around the array of up to 1 m s −1 and a reduction in the mean volume flux through the Alderney Race of 8%. The annual energy yield estimate of the array is 3.18 TWh, equivalent to the electricity demand of around 1 million homes. The capacity factor of the array is 18%, implying sub-optimal array design. This result demonstrates the need for turbine rated speed to be selected based on the altered flow regime, not the ambient flow. Further enhancement to array performance is explored through increases to rotor diameter and changes to device micro-siting, demonstrating the significant potential for array performance improvement. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


Sign in / Sign up

Export Citation Format

Share Document