Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance

Author(s):  
Emanuele Ogliari ◽  
Manfredo Guilizzoni ◽  
Silvia Pretto ◽  
Alessandro Giglio
2020 ◽  
Vol 12 (9) ◽  
pp. 3778 ◽  
Author(s):  
Muhammad Shahzad Nazir ◽  
Fahad Alturise ◽  
Sami Alshmrany ◽  
Hafiz. M. J Nazir ◽  
Muhammad Bilal ◽  
...  

To sustain a clean environment by reducing fossil fuels-based energies and increasing the integration of renewable-based energy sources, i.e., wind and solar power, have become the national policy for many countries. The increasing demand for renewable energy sources, such as wind, has created interest in the economic and technical issues related to the integration into the power grids. Having an intermittent nature and wind generation forecasting is a crucial aspect of ensuring the optimum grid control and design in power plants. Accurate forecasting provides essential information to empower grid operators and system designers in generating an optimal wind power plant, and to balance the power supply and demand. In this paper, we present an extensive review of wind forecasting methods and the artificial neural network (ANN) prolific in this regard. The instrument used to measure wind assimilation is analyzed and discussed, accurately, in studies that were published from May 1st, 2014 to May 1st, 2018. The results of the review demonstrate the increased application of ANN into wind power generation forecasting. Considering the component limitation of other systems, the trend of deploying the ANN and its hybrid systems are more attractive than other individual methods. The review further revealed that high forecasting accuracy could be achieved through proper handling and calibration of the wind-forecasting instrument and method.


Author(s):  
S. RATH ◽  
P. P. SENGUPTA ◽  
A. P. SINGH ◽  
A. K. MARIK ◽  
P. TALUKDAR

Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.


Sign in / Sign up

Export Citation Format

Share Document