Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation

Author(s):  
Elie Al Shami ◽  
Zhun Wang ◽  
Xu Wang
Author(s):  
Shangyan Zou ◽  
Ossama Abdelkhalik

Abstract This paper presents a high-fidelity numerical wave tank simulation for Variable Geometry Wave Energy Converters (VG-WECs). Typically, wave energy converters require reactive power to optimize the energy conversion, which significantly jeopardizes the economic index of the system. The proposed VGWECs allows comprehensive shape-changing not only in response to ocean climate but also to reduce the reactive power requirements on the power take-off (PTO) unit. This design aims at eliminating reactive power with minimal impact on optimality in terms of energy production. To investigate the dynamic behavior of the VGWEC, this model is simulated in a Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT) using ANSYS 2-way Fluid Structure Interaction (FSI) tool. The interaction between irregular waves and the VGWEC is simulated. The numerical results show that the proposed VGWEC has large deformation and motion in response to the incoming wave. This highly nonlinear interaction between waves and VGWEC can be leveraged to eliminate reactive power.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 6585-6593 ◽  
Author(s):  
Xiaojie Tian ◽  
Qingyang Wang ◽  
Guijie Liu ◽  
Wei Deng ◽  
Zhiming Gao

Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Author(s):  
Atsushi TAKAGI ◽  
Masashi WATANABE ◽  
Taro ARIKAWA

Author(s):  
L. L. Jiao ◽  
M. Greco ◽  
O. M. Faltinsen

A two-dimensional composite strategy given by Greco et al. [1] is applied to couple a linear global solution with a nonlinear local analysis. Globally a linear hydroelastic analysis is performed by an accurate Beam-On-Elastic-Foundation (BOEF) method. A parameter analysis of hydroelastic response of the structure is also carried out. Locally, a two-dimensional fully-nonlinear numerical wave tank (NWT) in combination with a Boundary Element Method (BEM) is developed to estimate the interaction between regular waves and the structure restrained from rigid and elastic motions. The effect of air cushion is considered. Present results are compared with experimental data and other numerical solutions.


2018 ◽  
Vol 170 ◽  
pp. 89-99 ◽  
Author(s):  
Fábio M. Marques Machado ◽  
António M. Gameiro Lopes ◽  
Almerindo D. Ferreira

Sign in / Sign up

Export Citation Format

Share Document