Influence of residential water use efficiency measures on household water demand: A four year longitudinal study

2011 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mengshan Lee ◽  
Berrin Tansel ◽  
Maribel Balbin
Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1162 ◽  
Author(s):  
Arnaud Reynaud ◽  
Giulia Romano

The aim of this Special Issue is to gather evidence on the impact of price policies (PP) and non-price policies (NPP) in shaping residential water use in a context of increased water scarcity. Indeed, a large body of the empirical economic literature on residential water demand has been devoted to measuring the impact of PP (water price increases, use of block rate pricing or peak pricing, etc.). The consensus is that the residential water demand is inelastic with respect to water price, but not perfectly. Given the low water price elasticity, pricing schemes may not always be effective tools for modifying household water behaviors. This is puzzling since increasing the water price is still viewed by public authorities as the most direct economic tool for inducing water conservation behaviors. Additional evidence regarding the use of PP in shaping residential water use is then required. More recently, it has been argued that residential consumers may react to NPP, such as water conservation programs, education campaigns, or smart metering. NPP are based on the idea that residential water users can implement strategies that will result in water savings via changing their individual behaviors. Feedback information based on smart water metering is an example of approach used by some water utilities. There are still large gaps in the knowledge on the residential water demand, and in particular on the impact of PP and NPP on residential water use, household water affordability and water service performance. These topics are addressed in this Special Issue “Advances in the Economic Analysis of Residential Water Use”.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


2020 ◽  
Author(s):  
Heather Hodges ◽  
Colin Kuehl ◽  
Sarah E. Anderson ◽  
Phillip John Ehret ◽  
Cameron Brick

As populations increase and droughts intensify, water providers are using tools such as persuasive messaging to decrease residential water use. However, district-led messaging campaigns are rarely informed by psychological science, evaluated for effectiveness, or strategically disseminated. In collaboration with a water district, we report a field experiment among single-family households using persuasive messaging based on the information-motivation-behavioral skills model (IMB). We randomly assigned 10,000 households to receive different mailings and measured household water use. All messaging reduced water consumption relative to the control. On average, water use dropped 0.68 HCF (509 gallons) per household in the first month. Had all 10,000 single-family, occupied, non-agricultural residences been mailed the IMB messaging, more than 5 million gallons would have been saved in the first month. The effects declined but persisted for approximately three months and were three to six times greater in households with high water use (75th-90th percentiles) relative to average water use. These findings suggest that combining message elements from the IMB model can reduce residential water use and that targeting high-use households is particularly cost-effective.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1709
Author(s):  
Pius Babuna ◽  
Xiaohua Yang ◽  
Dehui Bian

The Yangtze River Economic Delta (YRED) faces inequality in water use in large proportions due to rapid industrialization. This study adopted the Gini coefficient and Global Moran’s index to calculate inequality, its spatial spread and water use efficiency of cities in the YRED and categorized them into types based on the spatial spread of inequality. In general, inequality is reducing, but water use efficiency is poor. Inequality was rated 0–1; zero being the highest equality while 1 indicates the highest inequality. There is relatively high inequality (0.4–0.5) in Shanghai, Suzhou and Hefei. Most cities (20), however, showed equality (below 0.2). Nine (9) cities showed relative equality (0.2–0.3), while Wuxi, Bengbu and Zhenjiang were neutral (0.3–0.4). No city scored above 0.5. Water use efficiency in the majority of cities was poor. Only 11 out of 35 cities scored more than 50% efficiency. Poor irrigation, income and industrial water demand are the factors driving inefficiency and inequality. The categorization of cities into groups produced nine city types according to the spatial disposition of inequality. A combined effort to formulate policies targeting improved water use efficiency, reduced industrial consumption and improved irrigation, tailored towards the specific situation of each city type, would eliminate inequality.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2329
Author(s):  
Masayoshi Tanishita ◽  
Daisuke Sunaga

Many papers estimate the price elasticity of water demand. However, heterogeneity and temporal variation of price elasticity of residential water use are still unclear. We analyze these issues by applying the latent class analysis and t-test using disaggregated data of approximately 30,000 households recorded over five years: Two years before and three years after a tariff revision. As a result, the households are divided into three (heterogeneous) groups: About 5% of them responded to the price change sensitively, 40–60% slightly, and 35–55% not at all. Households with high water use prior to the revision had higher price elasticity. In addition, the price elasticity in the first and third years after the revision was the same.


2019 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
I Wayan Tika ◽  
I. A. Bintang Madrini ◽  
Sumiyati .

Salah satu program penting dalam intensifikasi budidaya padi adalah pengelolaan air irigasi yang efisien. Pada subak di Bali pelaksanaan jadual tanam biasanya dilakukan secara serenpak sehingga terjadi puncak kebutuhan air yang tinggi. Akibatnya sangat berisiko terhadap kekurangan atau kelebihan air irigasai pada subak tersebut. Kondisi demikian menyebabkan efisiensi penggunaan air irigasi pada subak menjadi rendah. Salah satu solusi untuk meingkatkan efisiensi penggunaan air irigasi tersebut adalah dengan melakukan jadual tanam tidak serenpak yang pada subak dikenal dengan istilah nyorog. Dengan demikian perlu dikaji besarnya peningkatan efisiensi penggunaan air irigasi jika jadual tanam dilakukan secara nyorog Berdasarkan data yang telah dikompilasi diperoleh efisiensi penggunaan air irigasi yang dilakukan saat ini sebesar 76,52%. Saat ini pada obyek penelitian jadual tanam dibagi menjadi dua kelompok dengan beda jadual tanam antar kelompok tersebut sekitar satu bulan, dengan awal jadual tanam mulai Pebruari I.  Jika dilakukan jadual tanam secara serempak pada Pebruari II diperoleh efisiensi penggunaan air irigasi sebesar 69,05%.  Jika jadual tanam dilakukan secara nyorog dengan membagi subak menjadi empat kelompok dan setiap kelompok perbedaan jadual tanam sekitar setengah bulan serta awal jadual tanam pada Bulan Pebruari I maka diperoleh efisiensi penggunaan air irigasinya 86,52%.  Dengan demikian jadual tanam secara nyorog dapat meningkatkan efisiensi penggunaan air irigasi dari 69,05% menjadi 86,52%.    One important program in the intensification of rice cultivation is efficient irrigation water management. In subak in Bali the planting schedule is usually carried out simultaneously so that there is a high peak of water demand. As a result, it is very risky for irrigation water shortages or excess in the subak. Such conditions cause the efficiency of the use of irrigation water in subak to be low. One solution to improve the efficiency of the use of irrigation water is by not planting simultaneously which are known as nyorog in subak. Thus, it is necessary to assess the magnitude of the increase in the efficiency of the use of irrigation water if the planting schedule is carried out in a systematic manner. Based on the data that has been compiled in Subak Guama  the efficiency of the use of irrigation water is 76.52%. At present the object of the planting schedule is divided into two groups with different planting schedules between groups of about one month, with the start of the planting schedule starting in February I. If the planting schedule is simultaneously held in February II, the efficiency of irrigation water use is 69.05%. If the planting schedule is carried out systematically by dividing subak into four groups and each group different planting schedules of about half a month and the beginning of the planting schedule in February I, it is obtained that the water use efficiency of irrigation is 86.52%. Thus the planting schedule nyorog can increase the efficiency of irrigation water use through 69.05% to 86.52%.


Sign in / Sign up

Export Citation Format

Share Document