Improved methods for producing outer membrane vesicles in Gram-negative bacteria

Author(s):  
T Henry
2004 ◽  
Vol 155 (6) ◽  
pp. 437-446 ◽  
Author(s):  
Thomas Henry ◽  
Stéphanie Pommier ◽  
Laure Journet ◽  
Alain Bernadac ◽  
Jean-Pierre Gorvel ◽  
...  

2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2017 ◽  
Vol 199 (15) ◽  
Author(s):  
Jonathan B. Lynch ◽  
Rosanna A. Alegado

ABSTRACT Outer membrane vesicles (OMVs) are proteoliposome nanoparticles ubiquitously produced by Gram-negative bacteria. Typically bearing a composition similar to those of the outer membrane and periplasm of the cells from which they are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once considered inconsequential by-products of bacterial growth, OMVs have since been demonstrated to mediate cellular stress relief, promote horizontal gene transfer and antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained appreciation as critical moderators of interorganismal dynamics. In this review, we focus on recent progress toward understanding the functions of OMVs with regard to symbiosis and ecological contexts, and we propose potential avenues for future OMV studies.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2109-2121 ◽  
Author(s):  
Heramb M. Kulkarni ◽  
Medicharla V. Jagannadham

Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.


Author(s):  
Carlos Fernando Macedo da Silva ◽  
Marcelo Lancellotti

Multi-resistance to antibiotics in Gram-negative bacteria has been reported in several studies, which make more effective methods of controlling and eliminating these bacteria necessary. To overcome multiresistant profiles, we used OMVs (Outer Membrane Vesicles) as carriers of levofloxacin to encapsulate and transport the drug from the extracellular medium into the cell, overcoming resistance barriers and inhibiting cell reproduction machinery. Prepackaged formulations in this manner were quite effective and, in some cases, totally inhibited bacterial growth by making the drug efficient again.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Noemi Furuyama ◽  
Marcelo Palma Sircili

Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.


2015 ◽  
Vol 2 (5) ◽  
pp. 93-96 ◽  
Author(s):  
A Fateh ◽  
F Vaziri ◽  
F Rahimi Janani ◽  
S Ahmadi Badi ◽  
M Ghazanfari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document