scholarly journals Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling

2021 ◽  
Vol 210 ◽  
pp. 107545
Author(s):  
Yury Redutskiy ◽  
Cecilie M. Camitz-Leidland ◽  
Anastasiia Vysochyna ◽  
Kristanna T. Anderson ◽  
Marina Balycheva
Author(s):  
M.A. Magomedgadzhieva ◽  
◽  
G.S. Oganov ◽  
I.B. Mitrofanov ◽  
A.M. Karpov ◽  
...  

Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


2021 ◽  
Vol 6 (3) ◽  
pp. 130-135
Author(s):  
Elena A. Poskonina ◽  
Anna N. Kurchatova

Background. Designing problems of oil fields infrastructure in the Arctic under climate change, namely, applying of temperature coefficient when calculating bearing capacity, heaving of lightly loaded foundations, optimization of thermal stabilization solutions are presented in the article. Aim. To change the strategy for designing foundations on permafrost by choosing the worst soil conditions to the implementation of an invariant matrix for designing and construction of soil bases and foundations considering specifics of industrial facilities of oil and gas fields based on unified numerical calculations (regulations). Materials and methods. An overview of the current regulatory requirements to the design of foundations on permafrost is made. The analysis of forecast modeling of the temperature of soil bases of typical industrial facilities of oil and gas fields to justify design solutions and also the use of thermal stabilization systems is done. Results. It is proposed to develop a regional directory of weather stations with long observation period based on updated climate data to decrease the volume of designing work and the amount of mistakes in applying of thermal stabilization systems. It is necessary to create regional dynamic models of permafrost geosystems, implement forecast modeling of seasonal thawing potential depth and frozen ground temperature in natural landscapes on the base of geotechnical monitoring data and select adaptation methods to existing or expecting climate change trends. Conclusions. Regulations on designing and construction of soil bases and foundations on permafrost considering specifics of industrial facilities of oil and gas fields is an effective solution. It allows moving on the strategy implementation of uniform approaches to oil fields development on permafrost: from designing for every structure on the base of typical solutions and results of engineering surveys to invariant matrix of project solutions.


2021 ◽  
Author(s):  
Rafael Islamov ◽  
Eghbal Motaei ◽  
Bahrom Madon ◽  
Khairul Azhar Abu Bakar ◽  
Victor Hamdan ◽  
...  

Abstract Dynamic Well Operating Envelop (WOE) allows to ensure that well is maintained and operated within design limits and operated in the safe, stable and profitable way. WOE covers the Well Integrity, Reservoir constraints and Facility limitations and visualizes them on well performance chart (Hamzat et al., 2013). Design and operating limits (such as upper and lower completion/facilities design pressures, sand failure, erosion limitations, reservoir management related limitations etc) are identified and translated into two-dimensional WOE (pressure vs. flowrate) to ensure maximum range of operating conditions that represents safe and reliable operation are covered. VLP/IPR performance curves were incorporated based on latest Validated Well Model. Optimum well operating window represents the maximum range of operating conditions within the Reservoir constraints assessed. By introducing actual Well Performance data the optimisation opportunities such as production/injection enhancement identified. During generating the Well Operating Envelops tremendous work being done to rectify challenges such as: most static data (i.e. design and reservoir limitations) are not digitized, unreliable real-time/dynamic data flow (i.e. FTHP, Oil/Gas rates etc), disintegrated and unreliable well Models and no solid workflows for Flow assurance. As a pre-requisite the workflows being developed to make data tidy i.e.ready and right, and Well Model inputs being integrated to build updated Well Models. Successful WOE prototype is generated for natural and artificially lifted Oil and Gas wells. Optimisation opportunities being identified (i.e. flowline pressure reduction, reservoir stimulation and bean-up) Proactive maintenance is made possible through dynamic WOE as a real time exceptional based surveillance (EBS) tool which is allowing Asset engineers to conduct the well performance monitoring, and maintain it within safe, stable and profitable window. Additionally, it allows to track all Production Enhancement jobs and seamless forecasting for new opportunities.


Author(s):  
Amer Dabbagh ◽  
Eissa Khoori

This major Oil and Gas producing company in the Gulf went through an implementation experience of EIS system in 2005. The EIS Implementation involved the replacement of the existing Maintenance, Supply, and Commercial system with a new EIS and an upgrade of the HR and Financial systems to the latest releases. The exercise was prompted by management’s desire to replace the outdated ERP system in order to address shortcomings in functionality, to control the high cost of upgrades and modifications, and to enable implementation of the newly formulated Maintenance Policy. The project was deemed a success, even though it took longer than planned and the results were less than anticipated.


2000 ◽  
Vol 40 (2) ◽  
pp. 126
Author(s):  
C.F. Webb

Esso Australia Pty Ltd, on behalf of the Esso/BHP Petroleum Joint Venture, recently completed Australia’s first deepwater oil and gas subsea development, Blackback, in Bass Strait. The project consisted of fabrication and installation of new facilities for the existing Mackerel platform, fabrication and installation of a 23 km pipeline and the installation of three subsea wells. The facilities were installed injury-free. This paper focusses on the application of safety systems to achieve this result.The Project.The vision of a zero Total Recordable Injury (TRI)-free workplace.Management commitment and leadership.Application of effective safety management systems.Empowering safety leadership.Taking the Blackback story further.Safety performance and other business outcomes.Conclusions/accomplishments lessons learnt and recommendations.


2019 ◽  
Vol 812 ◽  
pp. 92-99 ◽  
Author(s):  
Damjan Cekerevac ◽  
Constanca Rigueiro ◽  
Eduardo Pereira

The response of the bulkhead type of blast wall under deflagration blast pulse was studied using finite element modelling software. The behavior of unstiffened and stiffened panels was analyzed. The study aimed at determining the effect of plate and stiffener thicknesses on energy dissipation and distribution of reaction forces. This was carried out in order to optimize the response of the primary steelwork through typological and geometrical modifications of the local element. Furthermore, novel strategies for the improvement of the blast response were introduced with a focus to use alternative materials and innovative connections. The latter was assessed numerically using a simplified model and its benefits were analyzed by comparing with the traditional approach.


Author(s):  
A. E. Cherepovitsyn ◽  
◽  
D. M. Metkin ◽  

The Arctic zone of the Russian Federation (AZRF) is characterized by the fragility of the ecosystem, the slightest violation of which can lead to catastrophic negative consequences on a global scale. Due to the availability of production facilities of various scales and environmental safety classes within the territorial and aquatic Arctic, the risk of negative impact on the environment is very significant. In order to prevent possible environmental damage within the AZRF, it is advisable to carry out activities related to the implementation of continuous monitoring of the environment aimed at detecting sources that pose a potential threat to the ecosystem. Taking into account the harsh Arctic climate, the lack of the possibility of year-round land access to industrial facilities located in the Russian Arctic, the scale and peculiarities of the implementation of Arctic offshore projects for the extraction and processing of hydrocarbons, the length and congestion of the used logistic artery - the Northern Sea Route, the choice of means, which are used for monitoring the ecological situation is justified by their mobility and efficiency. In particular, such means include technologies that allow remote monitoring of the environmental situation of industrial facilities. The article outlines the role of remote methods of environmental monitoring and control in the system of environmental protection measures of the Russian Arctic, presents methods for assessing the impact of industrial facilities of the oil and gas complex (OGC) on the environment of the Russian Arctic, presents the results of assessing the effectiveness of using remote methods of environmental monitoring of industrial facilities for the production and processing of hydrocarbons (HC) in the AZRF. The scientific novelty of the study lies in the substantiation of the ecological and economic feasibility of using the methods of remote monitoring of the ecological situation in the Arctic.


Author(s):  
Vadim Petrovich Marakhtanov

The subject of the study was to determine the causes of long-term deformation of the structures of technological equipment inside the building of the pumping station that supplies water to the industrial facilities and residential buildings of the infrastructure of the Zapolyarnoye oil and gas condensate field, located in the permafrost zone of Western Siberia, near the Arctic Circle. The main objectives of the study were to identify the mechanism of these deformations and develop practical recommendations for stabilizing structures and preventing their further destruction based on the analysis of the results. The survey was carried out using a set of methods provided for by the current legislation (visual and measurement control, geodetic works, thermometric observations in wells). The current situation at objects of such importance at the time of our study had no analogues. Analysis of the results of the structure inspection leads to the conclusion that the cause of the deformations were miscalculations in the design, construction and operation of the structure. The construction should be done with participation of specialists in the field of permafrost engineering.


2021 ◽  
Vol 230 ◽  
pp. 01003
Author(s):  
Nazar Pedchenko ◽  
Yuriy Vynnykov ◽  
Larysa Pedchenko ◽  
Mykhailo Pedchenko

The problem is analyzed of hydrate formation in the systems of gathering and treating of oil and gas products. The methods are studied for prevention of complications associated with the gas hydrates accumulation in the pipelines and process lines. Attention is focused on the significant material costs to prevent the hydrate formation and ways to reduce them. The necessity of constant laboratory monitoring for reservoir systems at industrial facilities to determine the hydrate formation parameters has been substantiated. The need to improve the method for determining the hydrate formation parameters for complex reservoir systems based on a mixture of hydrate-forming gases has also been proved. The purpose of the work is to improve the research method of reservoir systems immediately at the facilities of products mining and treatment. The peculiarities are analyzed of the method of visual laboratory observation in the study of gas hydrates. During experimental studies, optical effects of image distortion are observed due to the formation of a gas hydrate layer in the form of a film on the interphase surface. The mechanism of their formation, as well as the processes determining them have been substantiated. Based on this effect, a method of fixing the hydrate formation initial stage (beginning of crystal growth – mass crystallization) is proposed. For increasing the informative ability of the obtained images of hydrate formation processes, it is proposed to “paint” them with the help of colored light sources, as well as to regulate the intensity and direction of illumination. A number of photos are presented, which clearly illustrate the processes described in the paper.


Sign in / Sign up

Export Citation Format

Share Document