Isotope fractionation of carbon during diamond crystallization in model systems

2015 ◽  
Vol 56 (1-2) ◽  
pp. 239-244 ◽  
Author(s):  
V.N. Reutsky ◽  
Yu.N. Palyanov ◽  
Yu.M. Borzdov ◽  
A.G. Sokol
2021 ◽  
Vol 7 (4) ◽  
pp. eabb4644
Author(s):  
Yuri N. Palyanov ◽  
Yuri M. Borzdov ◽  
Alexander G. Sokol ◽  
Yuliya V. Bataleva ◽  
Igor N. Kupriyanov ◽  
...  

Most natural diamonds are formed in Earth’s lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth’s mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300° to 1600°C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral–forming processes, carbon isotope fractionation, and the global carbon cycle.


2015 ◽  
Vol 81 (18) ◽  
pp. 6241-6252 ◽  
Author(s):  
P. M. Martínez-Lavanchy ◽  
Z. Chen ◽  
V. Lünsmann ◽  
V. Marin-Cevada ◽  
R. Vilchez-Vargas ◽  
...  

ABSTRACTIn the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the familiesXanthomonadaceae,Comamonadaceae, andBurkholderiaceae, plusRhodospirillaceaein one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance ofRhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2644 ◽  
Author(s):  
Meiyi Liu ◽  
Katelyn Youmans ◽  
Jiali Gao

A dual QM and MM approach for computing equilibrium isotope effects has been described. In the first partition, the potential energy surface is represented by a combined quantum mechanical and molecular mechanical (QM/MM) method, in which a solute molecule is treated quantum mechanically, and the remaining solvent molecules are approximated classically by molecular mechanics. In the second QM/MM partition, differential nuclear quantum effects responsible for the isotope effect are determined by a statistical mechanical double-averaging formalism, in which the nuclear centroid distribution is sampled classically by Newtonian molecular dynamics and the quantum mechanical spread of quantized particles about the centroid positions is treated using the path integral (PI) method. These partitions allow the potential energy surface to be properly represented such that the solute part is free of nuclear quantum effects for nuclear quantum mechanical simulations, and the double-averaging approach has the advantage of sampling efficiency for solvent configuration and for path integral convergence. Importantly, computational precision is achieved through free energy perturbation (FEP) theory to alchemically mutate one isotope into another. The PI-FEP approach is applied to model systems for the 18O enrichment found in cellulose of trees to determine the isotope enrichment factor of carbonyl compounds in water. The present method may be useful as a general tool for studying isotope fractionation in biological and geochemical systems.


Author(s):  
K. Brasch ◽  
J. Williams ◽  
D. Gallo ◽  
T. Lee ◽  
R. L. Ochs

Though first described in 1903 by Ramon-y-Cajal as silver-staining “accessory bodies” to nucleoli, nuclear bodies were subsequently rediscovered by electron microscopy about 30 years ago. Nuclear bodies are ubiquitous, but seem most abundant in hyperactive and malignant cells. The best studied type of nuclear body is the coiled body (CB), so termed due to characteristic morphology and content of a unique protein, p80-coilin (Fig.1). While no specific functions have as yet been assigned to CBs, they contain spliceosome snRNAs and proteins, and also the nucleolar protein fibrillarin. In addition, there is mounting evidence that CBs arise from or are generated near the nucleolus and then migrate into the nucleoplasm. This suggests that as yet undefined links may exist, between nucleolar pre-rRNA processing events and the spliceosome-associated Sm proteins in CBs.We are examining CB and nucleolar changes in three diverse model systems: (1) estrogen stimulated chick liver, (2) normal and neoplastic cells, and (3) polyploid mouse liver.


Author(s):  
Yih-Tai Chen ◽  
Ursula Euteneuer ◽  
Ken B. Johnson ◽  
Michael P. Koonce ◽  
Manfred Schliwa

The application of video techniques to light microscopy and the development of motility assays in reactivated or reconstituted model systems rapidly advanced our understanding of the mechanism of organelle transport and microtubule dynamics in living cells. Two microtubule-based motors have been identified that are good candidates for motors that drive organelle transport: kinesin, a plus end-directed motor, and cytoplasmic dynein, which is minus end-directed. However, the evidence that they do in fact function as organelle motors is still indirect.We are studying microtubule-dependent transport and dynamics in the giant amoeba, Reticulomyxa. This cell extends filamentous strands backed by an extensive array of microtubules along which organelles move bidirectionally at up to 20 μm/sec (Fig. 1). Following removal of the plasma membrane with a mild detergent, organelle transport can be reactivated by the addition of ATP (1). The physiological, pharmacological and biochemical characteristics show the motor to be a cytoplasmic form of dynein (2).


Author(s):  
Ian M. Anderson ◽  
Arnulf Muan ◽  
C. Barry Carter

Oxide mixtures which feature a coexistence of phases with the wüstite and spinel structures are considered model systems for the study of solid-state reaction kinetics, phase boundaries, and thin-film growth, and such systems are especially suited to TEM studies. (In this paper, the terms “wüstite” and “spinel” will refer to phases of those structure types.) The study of wüstite-spinel coexistence has been limited mostly to systems near their equilibrium condition, where the assumptions of local thermodynamic equilibrium are valid. The cation-excess spinels of the type Ni2(1+x)Ti1-xO4, which reportedly exist only above 1375°C4, provide an excellent system for the study of wüstite-spinel coexistence under highly nonequilibrium conditions. The nature of these compounds has been debated in the literature. X-ray and neutron powder diffraction patterns have been used to advocate the existence of a single-phase, non- stoichiometric spinel. TEM studies of the microstructure have been used to suggest equilibrium coexistence of a stoichiometric spinel, Ni2TiO4, and a wüstite phase; this latter study has shown a coexistence of wüstite and spinel phases in specimens thought to have been composed of a single, non- stoichiometric spinel phase. The microstructure and nature of this phase coexistence is the focus of this study. Specimens were prepared by ball-milling a mixture of NiO and TiO2 powders with 10 wt.% TiO2. The mixture was fired in air at 1483°C for 5 days, and then quenched to room temperature. The aggregate thus produced was highly porous, and needed to be infiltrated prior to TEM sample preparation, which was performed using the standard techniques of lapping, dimpling, and ion milling.


Sign in / Sign up

Export Citation Format

Share Document