scholarly journals Time Series Forecasting of New Cases and New Deaths Rate for COVID-19 using Deep Learning Methods

2021 ◽  
pp. 104495
Author(s):  
Nooshin Ayoobi ◽  
Danial Sharifrazi ◽  
Roohallah Alizadehsani ◽  
Afshin Shoeibi ◽  
Juan M. Gorriz ◽  
...  
Author(s):  
Qingyi Pan ◽  
Wenbo Hu ◽  
Ning Chen

It is important yet challenging to perform accurate and interpretable time series forecasting. Though deep learning methods can boost forecasting accuracy, they often sacrifice interpretability. In this paper, we present a new scheme of series saliency to boost both accuracy and interpretability. By extracting series images from sliding windows of the time series, we design series saliency as a mixup strategy with a learnable mask between the series images and their perturbed versions. Series saliency is model agnostic and performs as an adaptive data augmentation method for training deep models. Moreover, by slightly changing the objective, we optimize series saliency to find a mask for interpretable forecasting in both feature and time dimensions. Experimental results on several real datasets demonstrate that series saliency is effective to produce accurate time-series forecasting results as well as generate temporal interpretations.


2021 ◽  
pp. 1-26
Author(s):  
Hala Hamdoun ◽  
Alaa Sagheer ◽  
Hassan Youness

Machine learning methods have been adopted in the literature as contenders to conventional methods to solve the energy time series forecasting (TSF) problems. Recently, deep learning methods have been emerged in the artificial intelligence field attaining astonishing performance in a wide range of applications. Yet, the evidence about their performance in to solve the energy TSF problems, in terms of accuracy and computational requirements, is scanty. Most of the review articles that handle the energy TSF problem are systematic reviews, however, a qualitative and quantitative study for the energy TSF problem is not yet available in the literature. The purpose of this paper is twofold, first it provides a comprehensive analytical assessment for conventional, machine learning, and deep learning methods that can be utilized to solve various energy TSF problems. Second, the paper carries out an empirical assessment for many selected methods through three real-world datasets. These datasets related to electrical energy consumption problem, natural gas problem, and electric power consumption of an individual household problem. The first two problems are univariate TSF and the third problem is a multivariate TSF. Compared to both conventional and machine learning contenders, the deep learning methods attain a significant improvement in terms of accuracy and forecasting horizons examined. In the meantime, their computational requirements are notably greater than other contenders. Eventually, the paper identifies a number of challenges, potential research directions, and recommendations to the research community may serve as a basis for further research in the energy forecasting domain.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2021 ◽  
Vol 264 ◽  
pp. 112600
Author(s):  
Robert N. Masolele ◽  
Veronique De Sy ◽  
Martin Herold ◽  
Diego Marcos Gonzalez ◽  
Jan Verbesselt ◽  
...  

Author(s):  
Mohammed Atef ◽  
Ahmed Khattab ◽  
Essam A. Agamy ◽  
Mohamed M. Khairy

2021 ◽  
Author(s):  
Süleyman UZUN ◽  
Sezgin KAÇAR ◽  
Burak ARICIOĞLU

Abstract In this study, for the first time in the literature, identification of different chaotic systems by classifying graphic images of their time series with deep learning methods is aimed. For this purpose, a data set is generated that consists of the graphic images of time series of the most known three chaotic systems: Lorenz, Chen, and Rossler systems. The time series are obtained for different parameter values, initial conditions, step size and time lengths. After generating the data set, a high-accuracy classification is performed by using transfer learning method. In the study, the most accepted deep learning models of the transfer learning methods are employed. These models are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet and GoogLeNet. As a result of the study, classification accuracy is found between 96% and 97% depending on the problem. Thus, this study makes association of real time random signals with a mathematical system possible.


Sign in / Sign up

Export Citation Format

Share Document