scholarly journals Centrality dependence of PT distributions and nuclear modification factor of charged particles in Pb–Pb interactions at SNN=2.76 TeV

2021 ◽  
Vol 30 ◽  
pp. 104790
Author(s):  
Muhammad Ajaz ◽  
Abd Al Karim Haj Ismail ◽  
Awais Ahmed ◽  
Zafar Wazir ◽  
Ramoona Shehzadi ◽  
...  
2007 ◽  
Vol 22 (19) ◽  
pp. 1381-1389 ◽  
Author(s):  
W. C. XIANG ◽  
D. C. ZHOU

Centrality dependence of nuclear modification factor at high pT above 4 GeV /c is studied in nucleus–nucleus collisions at [Formula: see text]. We find that the centrality dependence of the nuclear modification factor can be factorized as a Boltzmann function F(b). Comparing our model calculation with PHENIX data, we further confirm that the high pT spectrum of particles is dominated by surface emission.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950120 ◽  
Author(s):  
Q. Ali ◽  
Y. Ali ◽  
M. Haseeb ◽  
M. Ajaz

Transverse momentum distributions and nuclear modification factor of integrated charged particles yield produced in p[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] = 5.02 TeV are investigated in mid-rapidity regions of [Formula: see text] at one event multiplicity class 0–5% in the transverse momentum range of [Formula: see text]20 GeV/c. Simulations with EPOS-1.99, EPOS-LHC and QGSJETII-04 are compared with the ALICE data. All three models are in good agreement with each other up to [Formula: see text]3 GeV/c for transverse momentum distributions but after that QGSJETII-04 overpredicts the experimental data. EPOS-LHC seems to describe the experimental data quite well as compared to the other two models. The ratios of the kaons to pions and protons to pions are also presented where again EPOS-LHC provides good agreement with the ALICE data. In case of the nuclear modification factor, for (anti) pions and (anti) kaons, the model distribution is around 1, whereas it is greater than 1 in case of (anti) protons which shows Cronin enhancement.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750021 ◽  
Author(s):  
Y. Ali ◽  
N. Ullah Jan ◽  
U. Tabassam ◽  
M. Suleymanov ◽  
A. S. Bhatti

Transverse momentum distributions of primary charged particles have been studied using simulated data from the HIJING 1.0 event generator in the minimum bias p–Pb collisions at [Formula: see text] = 0.9, 1.8, 2.76 and 5.02[Formula: see text], in the two forward pseudorapidity ([Formula: see text]) regions: [Formula: see text] and [Formula: see text] and in the transverse momentum range of [Formula: see text]. The simulated data in the pseudorapidity region of [Formula: see text] at 5.02[Formula: see text] depicts some differences in the region of [Formula: see text] [Formula: see text] 2[Formula: see text] when compared with CMS data. Model shows systematically higher values than the experimental measurements pointing out absorption effect for the experimental data. It is also observed that with increasing rapidity interval from [Formula: see text] to [Formula: see text] observed differences for the behavior of the transverse momentum distributions are shifted to high transverse momentum region. The nuclear modification factor as a function of transverse momentum is constructed using the HIJING 1.0 code. With incident energy, the values of nuclear modification factor increase, for 0.9 and 1.8 [Formula: see text], the distributions seem to increase, but for 2.76 and 5.02 [Formula: see text], the distributions look flat. Numerically, the value of nuclear modification factor increases with the increase in the number of jets. This result shows that for the considered more forward pseudorapidiry area, the influence of the incident energy dominates and this is the reason that main results in the areas are connected with the leading particles.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract The inclusive production of the J/ψ and ψ(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8.16 TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals −4.46 < ycms< −2.96 (Pb-going direction) and 2.03 < ycms< 3.53 (p-going direction), down to zero transverse momentum (pT). The J/ψ and ψ(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The pT-differential J/ψ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average 〈pT〉 and $$ \left\langle {p}_{\mathrm{T}}^2\right\rangle $$ p T 2 values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/ψ increases from below unity in peripheral collisions to above unity in central collisions, while for the ψ(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5.02 TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Andronic ◽  
J. Honermann ◽  
M. Klasen ◽  
C. Klein-Bösing ◽  
J. Salomon

Abstract In this paper we present a study of in-medium jet modifications performed with JEWEL and PYTHIA 6.4, focusing on the uncertainties related to variations of the perturbative scales and nuclear parton distribution functions (PDFs) and on the impact of the initial and crossover temperature variations of the medium. The simulations are compared to LHC data for the jet spectrum and the nuclear modification factor. We assess the interplay between the choice of nuclear PDFs and different medium parameters and study the impact of nuclear PDFs and the medium on the jet structure via the Lund plane.


Sign in / Sign up

Export Citation Format

Share Document