A fast robotic arm gravity compensation updating approach for industrial application using sparse selection and reconstruction

2021 ◽  
pp. 103971
Author(s):  
Chenglong Yu ◽  
Zhiqi Li ◽  
Dapeng Yang ◽  
Hong Liu
2020 ◽  
Vol 10 (11) ◽  
pp. 3823
Author(s):  
William Montalvo ◽  
Juan Escobar-Naranjo ◽  
Carlos A. Garcia ◽  
Marcelo V. Garcia

During the Industry 4.0 era, the open source-based robotic arms control applications have been developed, in which the control algorithms apply for movement precision in the trajectory tracking paths based on direct or reverse kinematics. Therefore, small errors in the joint positions can summarize in large position errors of the end-effector in the industrial activities. Besides the change of the end-effector position for a given variation of the set-point in manipulator joint positions depends on the manipulator configuration. This research proposes a control based on Proportional Derivative (PD) Control with gravity compensation to show the robustness of this control scheme in the robotic arm’s industrial applications. The control algorithm is developed using a low-cost board like Raspberry Pi (RPI) where the Robot Operating System (ROS) is installed. The novelty of this approach is the development of new functions in ROS to make the PD control with gravity compensation in low-cost systems. This platform brings a fast exchange of information between the Kuka™ youBot robotic arm and a graphical user’s interface that allows a transparent interaction between them.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


2015 ◽  
Vol 9 (2) ◽  
pp. 182
Author(s):  
Germán Buitrago Salazar ◽  
Olga Lucía Ramos ◽  
Dario Amaya

Sign in / Sign up

Export Citation Format

Share Document