The role of pre-tensioned springs in 3 pneumatic artificial muscles driven joint mechanisms with sliding mode controllers

2022 ◽  
pp. 104017
Author(s):  
Zhongchao Zhou ◽  
Yuanyuan Wang ◽  
Wenwei Yu
2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
David Bou Saba ◽  
Paolo Massioni ◽  
Eric Bideaux ◽  
Xavier Brun

Pneumatic artificial muscles (PAMs) are an interesting type of actuators as they provide high power-to-weight and power-to-volume ratio. However, their efficient use requires very accurate control methods taking into account their complex and nonlinear dynamics. This paper considers a two degrees-of-freedom platform whose attitude is determined by three pneumatic muscles controlled by servovalves. An overactuation is present as three muscles are controlled for only two degrees-of-freedom. The contribution of this work is twofold. First, whereas most of the literature approaches the control of systems of similar nature with sliding mode control, we show that the platform can be controlled with the flatness-based approach. This method is a nonlinear open-loop controller. In addition, this approach is model-based, and it can be applied thanks to the accurate models of the muscles, the platform and the servovalves, experimentally developed. In addition to the flatness-based controller, which is mainly a feedforward control, a proportional-integral (PI) controller is added in order to overcome the modeling errors and to improve the control robustness. Second, we solve the overactuation of the platform by an adequate choice for the range of the efforts applied by the muscles. In this paper, we recall the basics of this control technique and then show how it is applied to the proposed experimental platform. At the end of the paper, the proposed approach is compared to the most commonly used control method, and its effectiveness is shown by means of experimental results.


2016 ◽  
Vol 248 ◽  
pp. 93-102
Author(s):  
Jacek Snamina ◽  
Paweł Orkisz

The paper presents active and semi-active vibration reduction systems applying sliding mode control systems. Calculations were completed for a laboratory system with two masses moving in a vertical direction. Support of the system is connected with the moving part of the exciter. The proposed system may be a simple model of many vibroisolated objects. In order to apply the control system of vibrations in the suspension of the upper mass, an actuator was implemented together with a spring. The role of the actuator was played by a linear inductive motor.Active and semi-active sliding mode controllers are proposed for the vibration reduction system. Theoretical analysis focused on applying of the sliding mode control in this system was carried out and, moreover, conditions to be met by the controllers were determined. The results of simulations and experiments are presented in tables and plots.


Author(s):  
Chen Su ◽  
Ao Chai ◽  
Xikai Tu ◽  
Hongyu Zhou ◽  
Haiqiang Wang ◽  
...  

Nerve injury can cause lower limb paralysis and gait disorder. Currently lower limb rehabilitation exoskeleton robots used in the hospitals need more power to correct abnormal motor patterns of stroke patients’ legs. These gait rehabilitation robots are powered by cumbersome and bulky electric motors, which provides a poor user experience. A newly developed gait rehabilitation exoskeleton robot actuated by low-cost and lightweight pneumatic artificial muscles (PAMs) is presented in this research. A model-free proxy-based sliding mode control (PSMC) strategy and a model-based chattering mitigation robust variable control (CRVC) strategy were developed and first applied in rehabilitation trainings, respectively. As the dynamic response of PAM due to the compressed air is low, an innovative intention identification control strategy was taken in active trainings by the use of the subject’s intention indirectly through the estimation of the interaction force between the subject’s leg and the exoskeleton. The proposed intention identification strategy was verified by treadmill-based gait training experiments.


Sign in / Sign up

Export Citation Format

Share Document