scholarly journals COPD patients with severe diffusion defect in carbon monoxide diffusing capacity predict a better outcome for pulmonary rehabilitation

2016 ◽  
Vol 22 (6) ◽  
pp. 323-330
Author(s):  
H. Sahin ◽  
I. Naz ◽  
Y. Varol ◽  
N. Aksel ◽  
F. Tuksavul ◽  
...  
CHEST Journal ◽  
2008 ◽  
Vol 134 (4) ◽  
pp. 22P
Author(s):  
Mahmoud Moammar ◽  
Vincent DeBari ◽  
Yousef Khelfa ◽  
Adel Blamoun ◽  
Ashraf Rashid ◽  
...  

2021 ◽  
Vol 18 ◽  
pp. 147997312110563
Author(s):  
Yingmeng Ni ◽  
Youchao Yu ◽  
Ranran Dai ◽  
Guochao Shi

To achieve a multidimensional evaluation of chronic obstructive pulmonary disease (COPD) patients, the spirometry measures are supplemented by assessment of symptoms, risk of exacerbations, and CT imaging. However, the measurement of diffusing capacity of the lung for carbon monoxide (DLCO) is not included in most common used models of COPD assessment. Here, we conducted a meta-analysis to evaluate the role of DLCO in COPD assessment. The studies were identified by searching the terms “diffusing capacity” OR “diffusing capacity for carbon monoxide” or “DLCO” AND “COPD” AND “assessment” in Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Scopus, and Web of Science databases. The mean difference of DLCO % predict was assessed in COPD patient with different severity (according to GOLD stage and GOLD group), between COPD patients with or without with frequent exacerbation, between survivors and non-survivors, between emphysema dominant and non-emphysema dominant COPD patients, and between COPD patients with or without pulmonary hypertension. 43 studies were included in the meta-analysis. DLCO % predicted was significantly lower in COPD patients with more severe airflow limitation (stage II/IV), more symptoms (group B/D), and high exacerbation risk (group C/D). Lower DLCO % predicted was also found in exacerbation patients and non-survivors. Low DLCO % predicted was related to emphysema dominant phenotype, and COPD patients with PH. The current meta-analysis suggested that DLCO % predicted might be an important measurement for COPD patients in terms of severity, exacerbation risk, mortality, emphysema domination, and presence of pulmonary hypertension. As diffusion capacity reflects pulmonary ventilation and perfusion at the same time, the predictive value of DLCO or DLCO combined with other criteria worth further exploration.


Author(s):  
Hulya Sahin ◽  
Ilknur Naz ◽  
Nimet Aksel ◽  
Fevziye Tuksavul ◽  
Ayse Ozsoz

Author(s):  
Jose L. Gonzalez-Montesinos ◽  
Jorge R. Fernandez-Santos ◽  
Carmen Vaz-Pardal ◽  
Jesus G. Ponce-Gonzalez ◽  
Alberto Marin-Galindo ◽  
...  

Chronic obstructive pulmonary disease (COPD) patients are characterised for presenting dyspnea, which reduces their physical capacity and tolerance to physical exercise. The aim of this study was to analyse the effects of adding a Feel-Breathe (FB) device for inspiratory muscle training (IMT) to an 8-week pulmonary rehabilitation programme. Twenty patients were randomised into three groups: breathing with FB (FBG), oronasal breathing without FB (ONBG) and control group (CG). FBG and ONBG carried out the same training programme with resistance, strength and respiratory exercises for 8 weeks. CG did not perform any pulmonary rehabilitation programme. Regarding intra group differences in the value obtained in the post-training test at the time when the maximum value in the pre-training test was obtained (PostPRE), FBG obtained lower values in oxygen consumption (VO2, mean = −435.6 mL/min, Bayes Factor (BF10) > 100), minute ventilation (VE, −8.5 L/min, BF10 = 25), respiratory rate (RR, −3.3 breaths/min, BF10 = 2), heart rate (HR, −13.7 beats/min, BF10 > 100) and carbon dioxide production (VCO2, −183.0 L/min, BF10 = 50), and a greater value in expiratory time (Tex, 0.22 s, BF10 = 12.5). At the maximum value recorded in the post-training test (PostFINAL), FBG showed higher values in the total time of the test (Tt, 4.3 min, BF10 = 50) and respiratory exchange rate (RER, 0.05, BF10 = 1.3). Regarding inter group differences at PrePOST, FBG obtained a greater negative increment than ONBG in the ventilatory equivalent of CO2 (EqCO2, −3.8 L/min, BF10 = 1.1) and compared to CG in VE (−8.3 L/min, BF10 = 3.6), VCO2 (−215.9 L/min, BF10 = 3.0), EqCO2 (−3.7 L/min, BF10 = 1.1) and HR (−12.9 beats/min, BF10 = 3.4). FBG also showed a greater PrePOST positive increment in Tex (0.21 s, BF10 = 1.4) with respect to CG. At PreFINAL, FBG presented a greater positive increment compared to CG in Tt (4.4 min, BF10 = 3.2) and negative in VE/VCO2 intercept (−4.7, BF10 = 1.1). The use of FB added to a pulmonary rehabilitation programme in COPD patients could improve tolerance in the incremental exercise test and energy efficiency. However, there is only a statically significant difference between FBG and ONBG in EqCO2. Therefore, more studies are necessary to reach a definitive conclusion about including FB in a pulmonary rehabilitation programme.


Respiration ◽  
2021 ◽  
pp. 1-7
Author(s):  
Roberta Pisi ◽  
Marina Aiello ◽  
Luigino Calzetta ◽  
Annalisa Frizzelli ◽  
Veronica Alfieri ◽  
...  

<b><i>Background:</i></b> The ventilation heterogeneity (VH) is reliably assessed by the multiple-breath nitrogen washout (MBNW), which provides indices of conductive (<i>S</i><sub>cond</sub>) and acinar (<i>S</i><sub>acin</sub>) VH as well as the lung clearance index (LCI), an index of global VH. VH can be alternatively measured by the poorly communicating fraction (PCF), that is, the ratio of total lung capacity by body plethysmography to alveolar volume from the single-breath lung diffusing capacity measurement. <b><i>Objectives:</i></b> Our objective was to assess VH by PCF and MBNW in patients with asthma and with COPD and to compare PCF and MBNW parameters in both patient groups. <b><i>Method:</i></b> We studied 35 asthmatic patients and 45 patients with COPD. Each patient performed spirometry, body plethysmography, diffusing capacity, and MBNW test. <b><i>Results:</i></b> Compared to COPD patients, asthmatics showed a significantly lesser degree of airflow obstruction and lung hyperinflation. In asthmatic patients, both PCF and LCI and <i>S</i><sub>acin</sub> values were significantly lower than the corresponding ones of COPD patients. In addition, in both patient groups, PCF showed a positive correlation with LCI (<i>p</i> &#x3c; 0.05) and <i>S</i><sub>acin</sub> (<i>p</i> &#x3c; 0.05), but not with <i>S</i><sub>cond</sub>. Lastly, COPD patients with PCF &#x3e;30% were highly likely to have a value ≥2 of the mMRC dyspnea scale. <b><i>Conclusions:</i></b> These results showed that PCF, a readily measure derived from routine pulmonary function testing, can provide a comprehensive measure of both global and acinar VH in asthma and in COPD patients and can be considered as a comparable tool to the well-established MBNW technique.


2008 ◽  
Vol 104 (4) ◽  
pp. 1094-1100 ◽  
Author(s):  
Sylvia Verbanck ◽  
Daniel Schuermans ◽  
Sophie Van Malderen ◽  
Walter Vincken ◽  
Bruce Thompson

It has long been assumed that the ventilation heterogeneity associated with lung disease could, in itself, affect the measurement of carbon monoxide transfer factor. The aim of this study was to investigate the potential estimation errors of carbon monoxide diffusing capacity (DlCO) measurement that are specifically due to conductive ventilation heterogeneity, i.e., due to a combination of ventilation heterogeneity and flow asynchrony between lung units larger than acini. We induced conductive airway ventilation heterogeneity in 35 never-smoker normal subjects by histamine provocation and related the resulting changes in conductive ventilation heterogeneity (derived from the multiple-breath washout test) to corresponding changes in diffusing capacity, alveolar volume, and inspired vital capacity (derived from the single-breath DlCO method). Average conductive ventilation heterogeneity doubled ( P < 0.001), whereas DlCO decreased by 6% ( P < 0.001), with no correlation between individual data ( P > 0.1). Average inspired vital capacity and alveolar volume both decreased significantly by, respectively, 6 and 3%, and the individual changes in alveolar volume and in conductive ventilation heterogeneity were correlated ( r = −0.46; P = 0.006). These findings can be brought in agreement with recent modeling work, where specific ventilation heterogeneity resulting from different distributions of either inspired volume or end-expiratory lung volume have been shown to affect DlCO estimation errors in opposite ways. Even in the presence of flow asynchrony, these errors appear to largely cancel out in our experimental situation of histamine-induced conductive ventilation heterogeneity. Finally, we also predicted which alternative combination of specific ventilation heterogeneity and flow asynchrony could affect DlCO estimate in a more substantial fashion in diseased lungs, irrespective of any diffusion-dependent effects.


1981 ◽  
Vol 51 (4) ◽  
pp. 858-863 ◽  
Author(s):  
D. L. Stokes ◽  
N. R. MacIntyre ◽  
J. A. Nadel

To study the effects of exercise on pulmonary diffusing capacity, we measured the lungs' diffusing capacity for carbon monoxide (DLCO) during exhalation from 30 to 45% exhaled vital capacity in eight healthy subjects at rest and during exercise while both sitting and supine. We found that DLCO at these lung volumes in resting subjects was 26.3 +/- 3.2% (mean +/- SE) higher in the supine than in the sitting position (P less than 0.001). We also found that, in both positions, DLCO at these lung volumes increased significantly (P less than 0.001) with increasing exercise and approached similar values at maximal exercise. The pattern of increase in DLCO with an increase in oxygen consumption in both positions was curvilinear in that the rate of increase in DLCO during mild exercise was greater than the rate of increase in DLCO during heavy exercise (P = 0.02). Furthermore, in the supine position during exercise, it appeared that DLCO reached a physiological maximum.


Sign in / Sign up

Export Citation Format

Share Document