Development of remote sensing-based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches

2021 ◽  
Vol 22 ◽  
pp. 100494
Author(s):  
Md. Monirul Islam ◽  
Shusuke Matsushita ◽  
Ryozo Noguchi ◽  
Tofael Ahamed
2019 ◽  
Vol 11 (23) ◽  
pp. 2752 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jinming Zhao ◽  
Guijun Yang ◽  
Jiangang Liu ◽  
Jiqiu Cao ◽  
...  

Yield evaluation of breeding lines is the key to successful release of cultivars, which is becoming a serious issue due to soil heterogeneity in enlarged field tests. This study aimed at establishing plot-yield prediction models using unmanned aerial vehicle (UAV)-based hyperspectral remote sensing for yield-selection in large-scale soybean breeding programs. Three sets of soybean breeding lines (1103 in total) were tested in blocks-in-replication experiments for plot yield and canopy spectral reflectance on 454~950 nm bands at different growth stages using a UAV-based hyperspectral spectrometer (Cubert UHD185 Firefly). The four elements for plot-yield prediction model construction were studied respectively and concluded as: the suitable reflectance-sampling unit-size in a plot was its 20%–80% central part; normalized difference vegetation index (NDVI) and ration vegetation index (RVI) were the best combination of vegetation indices; the initial seed-filling stage (R5) was the best for a single stage prediction, while another was the best combination for a two growth-stage prediction; and multi-variate linear regression was suitable for plot-yield prediction. In model establishment for each material-set, a random half was used for modelling and another half for verification. Twenty-one two growth-stage two vegetation-index prediction models were established and compared for their modelling coefficient of determination (RM2) and root mean square error of the model (RMSEM), verification RV2 and RMSEV, and their sum RS2 and RMSES. Integrated with the coincidence rate between the model predicted and the practical yield-selection results, the models, MA1-2, MA4-2 and MA6-2, with coincidence rates of 56.8%, 58.5% and 52.4%, respectively, were chosen for yield-prediction in yield-test nurseries. The established model construction elements and methods can be used as local models for pre-harvest yield-selection and post-harvest integrated yield-selection in advanced breeding nurseries as well as yield potential prediction in plant-derived-line nurseries. Furthermore, multiple models can be used jointly for plot-yield prediction in soybean breeding programs.


2021 ◽  
Vol 13 (3) ◽  
pp. 356
Author(s):  
Bingxue Zhu ◽  
Shengbo Chen ◽  
Yijing Cao ◽  
Zhengyuan Xu ◽  
Yan Yu ◽  
...  

The use of satellite remote sensing could effectively predict maize yield. However, many statistical prediction models using remote sensing data cannot extend to the regional scale without considering the regional climate. This paper first introduced the hierarchical linear modeling (HLM) method to solve maize-yield prediction problems over years and regions. The normalized difference vegetation index (NDVI), calculated by the spectrum of the Landsat 8 operational land imager (OLI), and meteorological data were introduced as input parameters in the maize-yield prediction model proposed in this paper. We built models using 100 samples from 10 areas, and used 101 other samples from 34 areas to evaluate the model’s performance in Jilin province. HLM provided higher accuracy with an adjusted determination coefficient equal to 0.75, root mean square error (RMSEV) equal to 0.94 t/ha, and normalized RMSEV equal to 9.79%. Results showed that the HLM approach outperformed linear regression (LR) and multiple LR (MLR) methods. The HLM method based on the Landsat 8 OLI NDVI and meteorological data could flexibly adjust in different regional climatic conditions. They had higher spatiotemporal expansibility than that of widely used yield estimation models (e.g., LR and MLR). This is helpful for the accurate management of maize fields.


2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


2021 ◽  
Author(s):  
Sanbon Gosa ◽  
Amit Koch ◽  
Itamar Shenhar ◽  
Joseph Hirschberg ◽  
Dani Zamir ◽  
...  

To address the challenge of predicting tomato yields in the field, we used whole-plant functional phenotyping to evaluate water relations under well-irrigated and drought conditions. The genotypes tested are known to exhibit variability in their yields in wet and dry fields. The examined lines included two lines with recessive mutations that affect carotenoid biosynthesis, zeta z2083 and tangerine t3406, both isogenic to the processing tomato variety M82. The two mutant lines were reciprocally grafted onto M82 and multiple physiological characteristics were measured continuously, as well as before, during and after drought treatment in the greenhouse. A comparative analysis of greenhouse and field yields showed that the whole-canopy stomatal conductance (gsc) in the morning and cumulative transpiration (CT) were strongly correlated with field measurements of total yield (TY: r2 = 0.9 and 0.77, respectively) and plant vegetative weight (PW: r2 = 0.6 and 0.94, respectively). Furthermore, the minimum CT during drought and the rate of recovery when irrigation was resumed were both found to predict resilience. Keywords: drought tolerance, functional genomic mapping, functional phenotyping, physiological trait, time-series measurements, tomato, yield prediction, yield-prediction models


2019 ◽  
Vol 19 (8) ◽  
pp. 1881-1893 ◽  
Author(s):  
Ahangama Kankanamge Rasika Nishamanie Ranasinghe ◽  
Ranmalee Bandara ◽  
Udeni Gnanapriya Anuruddha Puswewala ◽  
Thilantha Lakmal Dammalage

Abstract. Through the recent technological developments of radar and optical remote sensing in (i) the areas of temporal, spectral, spatial, and global coverage; (ii) the availability of such images either at a low cost or free of charge; and (iii) the advancement of tools developed in image analysis techniques and GIS for spatial data analysis, there is a vast potential for landslide studies using remote sensing and GIS as tools. Hence, this study aimed to assess the efficacy of using radar-derived factors (RDFs) in identifying landslide susceptibility using the bivariate information value method (InfoVal method) and the multivariate multi-criteria decision analysis based on the analytic hierarchy process statistical analysis. Using identified landslide causative factors, four landslide prediction models – bivariate with and without RDFs as well as multivariate with and without RDFs – were generated. Twelve factors such as topographical, hydrological, geological, land cover and soil plus three RDFs are considered. The weight of index for landslide susceptibility is calculated by using the landslide failure map, and susceptibility regions are categorized into four classes as very low, low, moderate, and high susceptibility to landslides. With the integration of RDFs, boundary detection between high- and very-low-susceptibility regions are increased by 7 % and 4 % respectively.


Sign in / Sign up

Export Citation Format

Share Document