scholarly journals Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017

2019 ◽  
Vol 225 ◽  
pp. 317-327 ◽  
Author(s):  
Tzu-Hsin Karen Chen ◽  
Alexander V. Prishchepov ◽  
Rasmus Fensholt ◽  
Clive E. Sabel
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiandong Chen ◽  
Ming Gao ◽  
Shulei Cheng ◽  
Xin Liu ◽  
Wenxuan Hou ◽  
...  

AbstractAccurate, long-term, full-coverage carbon dioxide (CO2) data in units of prefecture-level cities are necessary for evaluations of CO2 emission reductions in China, which has become one of the world’s largest carbon-emitting countries. This study develops a novel method to match satellite-based Defense Meteorological Satellite Program’s Operational Landscan System (DMSP/OLS) and Suomi National Polar-orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime light data, and estimates the CO2 emissions of 334 prefecture-level cities in China from 1992 to 2017. Results indicated that the eastern and coastal regions had higher carbon emissions, but their carbon intensity decreased more rapidly than other regions. Compared to previous studies, we provide the most extensive and long-term CO2 dataset to date, and these data will be of great value for further socioeconomic research. Specifically, this dataset provides a foundational data source for China’s future CO2 research and emission reduction strategies. Additionally, the methodology can be applied to other regions around the world.


2019 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Ying Chang ◽  
Shixin Wang ◽  
Yi Zhou ◽  
Litao Wang ◽  
Futao Wang

As the backbone and arteries of a comprehensive transportation network, highways play an important role in improving people’s living standards and promoting economic growth. However, globally, there is limited quantifiable data evaluating the highway traffic state, characteristics, and performance. From the 1960s to the present, remote sensing has been regarded as the most effective technology for long-term and large-scale monitoring of surface information. However, how to reflect the dynamic “flow” information of traffic with a static remote sensing image has always been a difficult problem that is hard to solve in the field. This study aims to construct a method of evaluating highway traffic prosperity using nighttime remote sensing. First, based on nighttime light data that indicate social and economic activities, a highway-oriented method was proposed to extract highway nighttime light data from 2015 annual nighttime light data of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (SNPP-VIIRS). Subsequently, Pearson correlation analysis was used to fit the relationship between freeway traffic flow volume and freeway nighttime light at the provincial level. The results showed that Pearson Correlation Coefficient of freeway nighttime light and freeway traffic flow volume for coach and truck are 0.905 and 0.731, respectively, which are higher than between freeway traffic flow volume for coach and truck and total nighttime light (0.593 and 0.516, respectively). A new index—Highway Nighttime Traffic Prosperity Index (HNTPI)—was proposed to evaluate highway traffic across China. The results showed that HNTPI has a strong correspondence with socio-economic parameters. The Pearson Correlation Coefficient of HNTPI and gross domestic product (GDP) per capita, consumption per capita, and population are 0.772, 0.895, and 0.968, respectively. There is a huge spatial heterogeneity in China nighttime traffic, the prosperity degree of highway traffic in developed coastal areas is obviously higher than that inland. The national general highway is the most prosperous highway at night and the national general highway nighttime prosperity of Shanghai reached 22.34%. This research provides basic data for the long-term monitoring and evaluation of regional traffic operation at night and research on the correlation between regional highway construction and the economy.


2021 ◽  
Vol 13 (5) ◽  
pp. 2930
Author(s):  
Pengfei Ban ◽  
Wei Zhan ◽  
Qifeng Yuan ◽  
Xiaojian Li

Cities defined mainly from the administrative aspect can create impact and problems especially in the case of China. However, only a few researchers from China have attempted to identify urban areas from the morphology dimension. In addition, previous studies have been mostly based on the national and regional scales or a single prefecture city and have completely ignored cross-boundary cities. Defining urban areas on the basis of a single data type also has limitations. To address these problems, this study integrates point of interest and nighttime light data, applies the breaking point analysis method to determine the physical geographic scope of the Guangzhou–Foshan cross-border city, and then compares this city with Beijing and Shanghai. Results show that Guangzhou–Foshan comprises one core urban area and six suburban counties, among which the core urban area extends across the administrative boundaries of Guangzhou and Foshan. The urban area and average urban radius of Guangzhou–Foshan are larger than those of Beijing and Shanghai, and this finding contradicts the city size measurements based on the administrative division system of China and those published on traditional official statistical yearbooks. In terms of urban density value, Shanghai has the steepest profile followed by Guangzhou–Foshan and Beijing, and the profile line of Guangzhou–Foshan has a bimodal shape.


Cities ◽  
2021 ◽  
Vol 118 ◽  
pp. 103373
Author(s):  
Ying Zhou ◽  
Chenggu Li ◽  
Wensheng Zheng ◽  
Yuefang Rong ◽  
Wei Liu

Author(s):  
Ryusei SAITO ◽  
Chizuko HIRAI ◽  
Chihiro HAGA ◽  
Takanori MATSUI ◽  
Hiroaki SHIRAKAWA ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1480 ◽  
Author(s):  
Marianne Dietz ◽  
Kam-biu Liu ◽  
Thomas Bianchette

The Louisiana shoreline is rapidly retreating as a result of factors such as sea-level rise and land subsidence. The northern Gulf of Mexico coast is also a hotspot for hurricane landfalls, and several major storms have impacted this region in the past few decades. A section of the Louisiana (USA) coast that has one of the highest rates of shoreline retreat in North America is the Caminada-Moreau headland, located south of New Orleans. Bay Champagne is a coastal lake within the headland that provides a unique opportunity to investigate shoreline retreat and the coastal effects of hurricanes. In order to examine the influence of hurricanes on the rate of shoreline retreat, 35 years (1983–2018) of Landsat imagery was analyzed. During that period of time, the shoreline has retreated 292 m. The overall rate of shoreline retreat, prior to a beach re-nourishment project completed in 2014, was over 12 m per year. A period of high hurricane frequency (1998–2013) corresponds to an increased average shoreline retreat rate of >21 m per year. Coastal features created by multiple hurricanes that have impacted this site have persisted for several years. Bay Champagne has lost 48% of its surface area over the last 35 years as a result of long-term shoreline retreat. If shoreline retreat continues at the average rate, it is expected that Bay Champagne will disappear completely within the next 40 years.


Sign in / Sign up

Export Citation Format

Share Document