Optimization and assessment of phytoplankton size class algorithms for ocean color data on the Northeast U.S. continental shelf

2021 ◽  
Vol 267 ◽  
pp. 112729
Author(s):  
Kyle J. Turner ◽  
Colleen B. Mouw ◽  
Kimberly J.W. Hyde ◽  
Ryan Morse ◽  
Audrey B. Ciochetto
2017 ◽  
Vol 198 ◽  
pp. 286-296 ◽  
Author(s):  
Arvind Sahay ◽  
Syed Moosa Ali ◽  
Anurag Gupta ◽  
Joaquim I. Goes

2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


2022 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Léa Schamberger ◽  
Audrey Minghelli ◽  
Malik Chami ◽  
François Steinmetz

The invasive species of brown algae Sargassum gathers in large aggregations in the Caribbean Sea, and has done so especially over the last decade. These aggregations wash up on shores and decompose, leading to many socio-economic issues for the population and the coastal ecosystem. Satellite ocean color data sensors such as Sentinel-3/OLCI can be used to detect the presence of Sargassum and estimate its fractional coverage and biomass. The derivation of Sargassum presence and abundance from satellite ocean color data first requires atmospheric correction; however, the atmospheric correction procedure that is commonly used for oceanic waters needs to be adapted when dealing with the occurrence of Sargassum because the non-zero water reflectance in the near infrared band induced by Sargassum optical signature could lead to Sargassum being wrongly identified as aerosols. In this study, this difficulty is overcome by interpolating aerosol and sunglint reflectance between nearby Sargassum-free pixels. The proposed method relies on the local homogeneity of the aerosol reflectance between Sargassum and Sargassum-free areas. The performance of the adapted atmospheric correction algorithm over Sargassum areas is evaluated. The proposed method is demonstrated to result in more plausible aerosol and sunglint reflectances. A reduction of between 75% and 88% of pixels showing a negative water reflectance above 600 nm were noticed after the correction of the several images.


2002 ◽  
Vol 11 (2) ◽  
pp. 235-241
Author(s):  
Joji Ishizaka ◽  
Kiyofumi Tashima ◽  
Motoaki Kishino

Sign in / Sign up

Export Citation Format

Share Document