optical signature
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Léa Schamberger ◽  
Audrey Minghelli ◽  
Malik Chami ◽  
François Steinmetz

The invasive species of brown algae Sargassum gathers in large aggregations in the Caribbean Sea, and has done so especially over the last decade. These aggregations wash up on shores and decompose, leading to many socio-economic issues for the population and the coastal ecosystem. Satellite ocean color data sensors such as Sentinel-3/OLCI can be used to detect the presence of Sargassum and estimate its fractional coverage and biomass. The derivation of Sargassum presence and abundance from satellite ocean color data first requires atmospheric correction; however, the atmospheric correction procedure that is commonly used for oceanic waters needs to be adapted when dealing with the occurrence of Sargassum because the non-zero water reflectance in the near infrared band induced by Sargassum optical signature could lead to Sargassum being wrongly identified as aerosols. In this study, this difficulty is overcome by interpolating aerosol and sunglint reflectance between nearby Sargassum-free pixels. The proposed method relies on the local homogeneity of the aerosol reflectance between Sargassum and Sargassum-free areas. The performance of the adapted atmospheric correction algorithm over Sargassum areas is evaluated. The proposed method is demonstrated to result in more plausible aerosol and sunglint reflectances. A reduction of between 75% and 88% of pixels showing a negative water reflectance above 600 nm were noticed after the correction of the several images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Pamela Orta-Ponce ◽  
Tamara Rodríguez-Ramos ◽  
Mar Nieto-Cid ◽  
Eva Teira ◽  
Elisa Guerrero-Feijóo ◽  
...  

AbstractMicrobial heterotrophic activity is a major process regulating the flux of dissolved organic matter (DOM) in the ocean, while the characteristics of this DOM strongly influence its microbial utilization and fate in the ocean. In order to broaden the vertical resolution of leucine-to-carbon conversion factors (CFs), needed for converting substrate incorporation into biomass production by heterotrophic bacteria, 20 dilution experiments were performed in the North Atlantic Ocean. We found a depth-stratification in empirical CFs values from epipelagic to bathypelagic waters (4.00 ± 1.09 to 0.10 ± 0.00 kg C mol Leu−1). Our results demonstrated that the customarily used theoretical CF of 1.55 kg C mol Leu−1 in oceanic samples can lead to an underestimation of prokaryotic heterotrophic production in epi- and mesopelagic waters, while it can overestimate it in the bathypelagic ocean. Pearson correlations showed that CFs were related not only to hydrographic variables such as temperature, but also to specific phylogenetic groups and DOM quality and quantity indices. Furthermore, a multiple linear regression model predicting CFs from relatively simple hydrographic and optical spectroscopic measurements was attempted. Taken together, our results suggest that differences in CFs throughout the water column are significantly connected to DOM, and also reflect differences linked to specific prokaryotic groups.


2021 ◽  
Vol 53 (12) ◽  
Author(s):  
J. V. Nguepnang ◽  
C. Kenfack-Sadem ◽  
A. Kenfack-Jiotsa ◽  
M. F. C. Fobasso ◽  
Y. Sun

2021 ◽  
Author(s):  
Jiho Kang ◽  
Stephanie Valenzuela ◽  
Emily Lin ◽  
Manuel Dominguez ◽  
Zachary Sherman ◽  
...  

Nanocrystal gel networks can be responsive, tunable materials, but deliberately designing their structure and controlling their properties have been challenging. By employing reversibly bonded molecular linkers, gelation can be realized under conditions predicted by thermodynamics. But, simulations have offered the only microscopic insights, with no experimental means to monitor linking leading to gelation. Here, we introduce a metal coordination linkage with a distinct optical signature allowing us to quantify linking in situ and establish the structural and thermodynamic basis for assembly. Due to coupling between linked indium tin oxide nanocrystals, their infrared absorption shifts abruptly at a chemically tunable gelation temperature. We quantify bonding spectroscopically and use molecular dynamics simulations to understand bonding motifs as a function of temperature, revealing that gel formation is governed by reaching a critical number of effective links that extend the nanocrystal network. Microscopic insights from our colorimetric linking chemistry enable switchable gels based on equilibrium thermodynamic principles, opening the door to rational design of programmable nanocrystal net-work assemblies.


2021 ◽  
Author(s):  
Valère Nguepnang ◽  
Christian Kenfack Sadem ◽  
Aurelien Kenfack-Jiotsa ◽  
Florette Fobasso ◽  
Yong Sun

Abstract We studied the optical signature of bipolaron and its effects on the bandgap modulation in the single-layer Transition Metal Dichalcogenides (TMDs) under magnetic field. Using the Huybrecht method, we derived the ground state energies in the modified zero Landau levels for all Fröhlich coupling constants. We take into account both intrinsic longitudinal optical phonon modes and surface optical phonon modes induced by the polar substrate. We observed that the higher the coupling strength, the stronger is the magnetic field effect. The highest amplitude of the bandgap modulation is obtained for the MoS2 monolayer and the lowest with the WSe2 monolayer. We also found that the bipolaron is stable in TMDs. It is seen that the optical absorption presents the threshold values and respectively increases for WSe2, MoSe2, WS2 and MoS2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hope M. Bretscher ◽  
Paolo Andrich ◽  
Prachi Telang ◽  
Anupam Singh ◽  
Luminita Harnagea ◽  
...  

AbstractThe layered chalcogenide Ta2NiSe5 has been proposed to host an excitonic condensate in its ground state, a phase that could offer a unique platform to study and manipulate many-body states at room temperature. However, identifying the dominant microscopic contribution to the observed spontaneous symmetry breaking remains challenging, perpetuating the debate over the ground state properties. Here, using broadband ultrafast spectroscopy we investigate the out-of-equilibrium dynamics of Ta2NiSe5 and demonstrate that the transient reflectivity in the near-infrared range is connected to the system’s low-energy physics. We track the status of the ordered phase using this optical signature, establishing that high-fluence photoexcitations can suppress this order. From the sub-50 fs quenching timescale and the behaviour of the photoinduced coherent phonon modes, we conclude that electronic correlations provide a decisive contribution to the excitonic order formation. Our results pave the way towards the ultrafast control of an exciton condensate at room temperature.


2021 ◽  
Author(s):  
Aude Flamand ◽  
Gwénaëlle Chaillou ◽  
Lauren Kipp ◽  
Dustin Whalen

<p><span><span>Global warming increases the thawing rate of the permafrost in high northern latitudes. The Arctic soil organic carbon accounts for over 50% of global soil carbon which is roughly twice the amount present in the atmosphere. An increasing amount of the newly mobilized old organic carbon, and its associated compounds, originating from permafrost thaw, is expected to be delivered to the Arctic Ocean by rivers and groundwater discharges all along the Arctic coastline. Absorbance and fluorescence spectroscopy can be used to identify a specific optical signature of permafrost-derived solutes with the objective of studying their transport and transformation to coastal waters. </span></span><span>Emission-excitation spectra (EEMs) from three sampling sites along the coastal area of the delta were assessed and parallel factor analysis (PARAFAC) was used to identify three different components characterizing the origin and the nature of the organic carbon present in various types of samples (massive ice, groundwater, seawater and water samples on top/bottom of slumps). This study suggests that the carbon originating from the thawing of the permafrost could indeed be traced along the coastal area of the Delta. </span></p>


2021 ◽  
Vol 322 ◽  
pp. 114976
Author(s):  
Antonin Pardon ◽  
Oriane Bonhomme ◽  
Clotilde Gaillard ◽  
Pierre-François Brevet ◽  
Emmanuel Benichou

2020 ◽  
Vol 8 (12) ◽  
pp. B47 ◽  
Author(s):  
Weijie Wu ◽  
Shizhen Chen ◽  
Wenhao Xu ◽  
Zhenxing Liu ◽  
Runnan Lou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document