Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data

2022 ◽  
Vol 269 ◽  
pp. 112844
Author(s):  
Xiaoqiang Liu ◽  
Yanjun Su ◽  
Tianyu Hu ◽  
Qiuli Yang ◽  
Bingbing Liu ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (18) ◽  
pp. 3736
Author(s):  
Sung-Hwan Park ◽  
Hyung-Sup Jung ◽  
Sunmin Lee ◽  
Eun-Sook Kim

The role of forests is increasing because of rapid land use changes worldwide that have implications on ecosystems and the carbon cycle. Therefore, it is necessary to obtain accurate information about forests and build forest inventories. However, it is difficult to assess the internal structure of the forest through 2D remote sensing techniques and fieldwork. In this aspect, we proposed a method for estimating the vertical structure of forests based on full-waveform light detection and ranging (FW LiDAR) data in this study. Voxel-based tree point density maps were generated by estimating the number of canopy height points in each voxel grid from the raster digital terrain model (DTM) and canopy height points after pre-processing the LiDAR point clouds. We applied an unsupervised classification algorithm to the voxel-based tree point density maps and identified seven classes by profile pattern analysis for the forest vertical types. The classification accuracy was found to be 72.73% from the validation from 11 field investigation sites, which was additionally confirmed through comparative analysis with aerial images. Based on this pre-classification reference map, which is assumed to be ground truths, the deep neural network (DNN) model was finally applied to perform the final classification. As a result of accuracy assessment, it showed accuracy of 92.72% with a good performance. These results demonstrate the potential of vertical structure estimation for extensive forests using FW LiDAR data and that the distinction between one-storied and two-storied forests can be clearly represented. This technique is expected to contribute to efficient and effective management of forests based on accurate information derived from the proposed method.


Author(s):  
T. Li ◽  
Z. Wang ◽  
J. Peng

Aboveground biomass (AGB) estimation is critical for quantifying carbon stocks and essential for evaluating carbon cycle. In recent years, airborne LiDAR shows its great ability for highly-precision AGB estimation. Most of the researches estimate AGB by the feature metrics extracted from the canopy height distribution of the point cloud which calculated based on precise digital terrain model (DTM). However, if forest canopy density is high, the probability of the LiDAR signal penetrating the canopy is lower, resulting in ground points is not enough to establish DTM. Then the distribution of forest canopy height is imprecise and some critical feature metrics which have a strong correlation with biomass such as percentiles, maximums, means and standard deviations of canopy point cloud can hardly be extracted correctly. In order to address this issue, we propose a strategy of first reconstructing LiDAR feature metrics through Auto-Encoder neural network and then using the reconstructed feature metrics to estimate AGB. To assess the prediction ability of the reconstructed feature metrics, both original and reconstructed feature metrics were regressed against field-observed AGB using the multiple stepwise regression (MS) and the partial least squares regression (PLS) respectively. The results showed that the estimation model using reconstructed feature metrics improved R<sup>2</sup> by 5.44&amp;thinsp;%, 18.09&amp;thinsp;%, decreased RMSE value by 10.06&amp;thinsp;%, 22.13&amp;thinsp;% and reduced RMSE<sub>cv</sub> by 10.00&amp;thinsp;%, 21.70&amp;thinsp;% for AGB, respectively. Therefore, reconstructing LiDAR point feature metrics has potential for addressing AGB estimation challenge in dense canopy area.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document