Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review

2013 ◽  
Vol 27 ◽  
pp. 622-653 ◽  
Author(s):  
Shaikh A. Razzak ◽  
Mohammad M. Hossain ◽  
Rahima A. Lucky ◽  
Amarjeet S. Bassi ◽  
Hugo de Lasa
2015 ◽  
Vol 184 ◽  
pp. 202-214 ◽  
Author(s):  
Abbas Mehrabadi ◽  
Rupert Craggs ◽  
Mohammed M. Farid

2015 ◽  
Vol 184 ◽  
pp. 222-229 ◽  
Author(s):  
Donna L. Sutherland ◽  
Clive Howard-Williams ◽  
Matthew H. Turnbull ◽  
Paul A. Broady ◽  
Rupert J. Craggs

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2282
Author(s):  
Sanjeet Mehariya ◽  
Rahul Kumar Goswami ◽  
Pradeep Verma ◽  
Roberto Lavecchia ◽  
Antonio Zuorro

The increasing world population generates huge amounts of wastewater as well as large energy demand. Additionally, fossil fuel’s combustion for energy production causes the emission of greenhouse gases (GHG) and other pollutants. Therefore, there is a strong need to find alternative green approaches for wastewater treatment and energy production. Microalgae biorefineries could represent an effective strategy to mitigate the above problems. Microalgae biorefineries are a sustainable alternative to conventional wastewater treatment processes, as they potentially allow wastewater to be treated at lower costs and with lower energy consumption. Furthermore, they provide an effective means to recover valuable compounds for biofuel production or other applications. This review focuses on the current scenario and future prospects of microalgae biorefineries aimed at combining wastewater treatment with biofuel production. First, the different microalgal cultivation systems are examined, and their main characteristics and limitations are discussed. Then, the technologies available for converting the biomass produced during wastewater treatment into biofuel are critically analyzed. Finally, current challenges and research directions for biofuel production and wastewater treatment through this approach are outlined.


2014 ◽  
Vol 6 ◽  
pp. 111-118 ◽  
Author(s):  
Patrick C. Hallenbeck ◽  
Gustavo B. Leite ◽  
Ahmed E.M. Abdelaziz

2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


ScienceRise ◽  
2020 ◽  
pp. 66-72
Author(s):  
Sergii Shamanskyi ◽  
Sergii Boichenko ◽  
Lesia Pavliukh

The object of research: the process of wastewater treatment using bioconversion for subsequent motor fuel production. Investigated problem: improving the efficiency of bioconversion process for biofuel production with simultaneous wastewater treatment by removing nitrogen and phosphorous compounds. The main scientific results: providing the possibility of biofuel production with energy and economic inefficiency. It is done by combining the process of motor biofuel production with the process of treating wastewater from biogenic elements makes it perspective for commercial use. Traditional technology for the production of motor biofuels from microalgae includes cultivation, harvesting, dehydration and drying of biomass, extraction of oils from them and subsequent production of methyl esters and glycerol. Such technology is often not economically effective. It requires significant amount of energy for carrying out all necessary processes. In addition, it requires significant expenditures of water and nutrients. The use of nutrient-rich wastewater as a culture medium for the cultivation of microalgae allows not only to reduce costs, but also to purify wastewater from nitrogen and phosphorus compounds, which makes this process economically effective. The area of practical use of the research results: Sewage and gray water treatment plants. Industrial and agricultural effluents treatment plants. Different types of enterprises, which have wastewater enriched with nitrogen and phosphorous compounds. Innovative technological product: The technology of microalgae cultivation using wastewater as a culture medium. The technology allows effectively purifying used wastewaters from nitrogen and phosphorous compounds with no waste at the end. Scope of the innovative technological product: Improved technology of motor biofuel production with simultaneous wastewater purification, which is economically effective and environmentally safe.


2013 ◽  
Vol 04 (09) ◽  
pp. 1018-1033 ◽  
Author(s):  
Monica C. Rothermel ◽  
Amy E. Landis ◽  
William J. Barr ◽  
Kullapa Soratana ◽  
Kayla M. Reddington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document