scholarly journals High-energy-resolution grazing emission X-ray fluorescence applied to the characterization of thin Al films on Si

2013 ◽  
Vol 88 ◽  
pp. 136-149 ◽  
Author(s):  
Y. Kayser ◽  
J. Szlachetko ◽  
D. Banaś ◽  
W. Cao ◽  
J.-Cl. Dousse ◽  
...  
2018 ◽  
Vol 25 (2) ◽  
pp. 373-377 ◽  
Author(s):  
Ayman H. Said ◽  
Thomas Gog ◽  
Michael Wieczorek ◽  
XianRong Huang ◽  
Diego Casa ◽  
...  

A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the IrL3absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7sample is shown.


2021 ◽  
Author(s):  
Kristina Kvashnina ◽  
Sergei M Butorin

In recent years, scientists have progressively recognized the role of electronic structure in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5...


2018 ◽  
Vol 51 (3) ◽  
pp. 761-767 ◽  
Author(s):  
Tom Faske ◽  
Wolfgang Donner

This article reports the development and characterization of a laboratory-based high-resolution X-ray powder diffractometer equipped with a 5.5 T magnet and closed-cycle helium cryostat that is primarily designed for the investigation of magneto-structural phase transitions. Unique features of the diffractometer include the position-sensitive detector, allowing the collection of an entire diffraction pattern at once, and the high energy resolution with Mo Kα 1 radiation. The ability to utilize a lower energy resolution but higher photon flux by switching to an X-ray mirror monochromator makes it a versatile setup for a variety of compounds. In this contribution, details of the design and performance of the instrument are presented along with its specifications.


2013 ◽  
Vol 15 (38) ◽  
pp. 16152 ◽  
Author(s):  
Kirill A. Lomachenko ◽  
Claudio Garino ◽  
Erik Gallo ◽  
Diego Gianolio ◽  
Roberto Gobetto ◽  
...  

2017 ◽  
Vol 139 (49) ◽  
pp. 18024-18033 ◽  
Author(s):  
Rebeca G. Castillo ◽  
Rahul Banerjee ◽  
Caleb J. Allpress ◽  
Gregory T. Rohde ◽  
Eckhard Bill ◽  
...  

2015 ◽  
Vol 112 (52) ◽  
pp. 15803-15808 ◽  
Author(s):  
Ofer Hirsch ◽  
Kristina O. Kvashnina ◽  
Li Luo ◽  
Martin J. Süess ◽  
Pieter Glatzel ◽  
...  

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document