scholarly journals Biodiesel Production by two step process from an Energy Source of Chrysophyllum albidum Oil using Homogeneous Catalyst

Author(s):  
Ramachandran Kasirajan
2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


2021 ◽  
Author(s):  
Wijittra Wongjaikham ◽  
Doonyapong Wongsawaeng ◽  
Vareeporn Ratnitsai ◽  
Manita Kamjam ◽  
Kanokwan Ngaosuwan ◽  
...  

Abstract Fatty acid methyl esters (FAMEs) are sustainable biofuel that can alleviate high oil cost and environmental impacts of petroleum-based fuel. A modified 1,200 W high efficiency fruit blender was employed for continuous transesterification of various refined vegetable oils and waste cooking oil (WCO) using sodium hydroxide as a homogeneous catalyst. The following factors have been investigated on their effects on FAME yield: baffles, reaction volume, total reactant flow rate, methanol-oil molar ratio, catalyst concentration and reaction temperature. Results indicated that the optimal conditions were: 2,000 mL reaction volume, 50 mL/min total flow rate, 1% and 1.25% catalyst concentration for refined palm oil and WCO, respectively, 6:1 methanol-to-oil molar ratio and 62 - 63oC, obtaining yield efficiency over 96.5% FAME yield of 21.14 ´ 10-4 g.J-1 (for palm oil) and 19.39 ´ 10-4 g.J-1 (for WCO). All the properties of produced FAMEs meet the EN 14214 and ASTM D6751 standards. The modified household fruit blender could be a practical and low-cost alternative biodiesel production apparatus for continuous biodiesel production for small communities in remote areas.


2013 ◽  
Vol 3 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Purabi Mazumdar ◽  
Swaroopa Rani Dasari ◽  
Venu Babu Borugadda ◽  
Garima Srivasatava ◽  
L. Sahoo ◽  
...  

2010 ◽  
Vol 52 (3) ◽  
pp. 254-262
Author(s):  
Manesh B. Dukare ◽  
Dr. S.K. Awasthi ◽  
Dr. V.S. Sapkal ◽  
Dr. R.S. Sapkal

2014 ◽  
Vol 26 (2) ◽  
pp. 527-530 ◽  
Author(s):  
Abu Bakar Muhammad ◽  
Zaffar Mehmood ◽  
Muhammad Farooq Hussain Munis ◽  
Hassan Javed Chaudhary ◽  
Tariq Masud ◽  
...  

Author(s):  
V.H. Wilson ◽  
V. Yalini

Fossil fuel is getting exhausted at a fast rate and contributes to high carbon monoxide emissions. Biodiesel, being environmentally friendly, has better performance than diesel. Castor oil is an easily available vegetable oil in India. But its high viscosity leads to blockage of the fuel lines. The amount of free fatty acid more than 1% leads to soap formation which necessitates the biodiesel production in a two step process. The first step of acid catalyzed esterification process reduces the free fatty acid content of castor oil to below 1%. The second step of transesterification process converts the preheated oil to castor biodiesel. This two step process gave a maximum yield of 90%.The methyl castor oil (biodiesel) is blended with diesel in different proportions on volume basis as 15:85 (B15), 25:75 (B25), and 35:65 (B35). These blended oils are used to run a single cylinder four stroke compression ignition engine with different coatings of pistons, to study and compare the engine performance and emission characteristics at different load conditions.


Sign in / Sign up

Export Citation Format

Share Document