scholarly journals Upper-bound solutions for face stability of circular tunnel in purely cohesive soil using continuous rotational velocity field

2018 ◽  
Vol 58 (6) ◽  
pp. 1511-1525
Author(s):  
Wantao Ding ◽  
Keqi Liu ◽  
Lewen Zhang ◽  
Peihe Shi ◽  
Mingjiang Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhengxing Wang ◽  
Yuke Wang ◽  
Shumao Wang ◽  
Bin Li ◽  
Hu Wang

The longitudinal gradient existed in shield-driven tunnel crossing river or channel has a longitudinal gradient, which is often ignored in most stability analyses of the tunnel face. Considering the influence of the longitudinal gradient into A(a) continuous velocity field, the present paper, conducting a limit analysis of the tunnel face in undrained clay, adopted to yield the upper-bound solutions of the limit pressure supporting on a three-dimensional tunnel face. The least upper bounds of the collapse and blow-out pressures can be obtained by conducting an optimization procedure. These upper-bound solutions are given in the design charts, which provide a simple way to assess the range of the limit pressure in practice. The influence of the longitudinal gradient becomes more significant with the increase of γD/su and C/D. The blow-out pressure for tunneling in a downward movement could be overestimated and the collapse pressure for tunneling in an upward movement could be conversely underestimated, with ignoring the influence of the longitudinal gradient.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


2019 ◽  
Vol 881 ◽  
pp. 1097-1122
Author(s):  
W. R. Graham

In analysing fluid forces on a moving body, a natural approach is to seek a component due to viscosity and an ‘inviscid’ remainder. It is also attractive to decompose the velocity field into irrotational and rotational parts, and apportion the force resultants accordingly. The ‘irrotational’ resultants can then be identified as classical ‘added mass’, but the remaining, ‘rotational’, resultants appear not to be consistent with the physical interpretation of the rotational velocity field (as that arising from the fluid vorticity with the body stationary). The alternative presented here splits the inviscid resultants into components that are unquestionably due to independent aspects of the problem: ‘convective’ and ‘accelerative’. The former are associated with the pressure field that would arise in an inviscid flow with (instantaneously) the same velocities as the real one, and with the body’s velocity parameters – angular and translational – unchanging. The latter correspond to the pressure generated when the body accelerates from rest in quiescent fluid with its given rates of change of angular and translational velocity. They are reminiscent of the added-mass force resultants, but are simpler, and closer to the standard rigid-body inertia formulae, than the developed expressions for added-mass force and moment. Finally, the force resultants due to viscosity also include a contribution from pressure. Its presence is necessary in order to satisfy the equations governing the pressure field, and it has previously been recognised in the context of ‘excess’ stagnation-point pressure. However, its existence does not yet seem to be widely appreciated.


2011 ◽  
Vol 378-379 ◽  
pp. 449-452
Author(s):  
Xue Gang Huang ◽  
Yu You Yang ◽  
Gui He Wang

A three-dimensional (3D) failure mechanism, based on the framework of the kinematical approach of limit analysis theory, is applied to calculate the face supporting pressure of a circular tunnel driven by the Earth Pressure Balance Shield (EPBS). The geometry of the mechanisms considered is composed of a sequence of truncated rigid cones. The numerical results obtained are presented.


2013 ◽  
Vol 353-356 ◽  
pp. 895-900 ◽  
Author(s):  
Xin Rong Liu ◽  
Ming Xi Ou ◽  
Xin Yang

In view of the shortage of using classical earth pressure theories to calculating passive earth pressure of cohesive soil on retaining wall under complex conditions. Based on the planar slip surface and the back of retaining wall was inclined and rough assumption, the calculation model of passive earth pressure of cohesive backfill under uniformly distrubuted loads was presented, in which the upper bound limit analysis was adopted. Meanwhile it was proven that the prevailing classical Rankine’s earth pressure theory was a special example simlified under the condition of its assumptions. For it’s difficult to determine the angle of slip surface , a relatively simple method for calculating the angle was proposed by example. And the influence of angle of wall back , friction angle of the interface between soil and retaining wall, cohesion force and internal friction angle of backfill soil to planar sliding surface and passive earth pressure were analyzed. Some good calculation results were achieved, these analysis can provide useful reference for the design of retaining wall.


Sign in / Sign up

Export Citation Format

Share Document