What does structure tell us about virus evolution?

2005 ◽  
Vol 15 (6) ◽  
pp. 655-663 ◽  
Author(s):  
Dennis H Bamford ◽  
Jonathan M Grimes ◽  
David I Stuart
Keyword(s):  
2016 ◽  
Vol 40 ◽  
pp. 80-90 ◽  
Author(s):  
E.M. Abdelwhab ◽  
M.K. Hassan ◽  
A.S. Abdel-Moneim ◽  
M.M. Naguib ◽  
A. Mostafa ◽  
...  

Virology ◽  
1994 ◽  
Vol 199 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Ki-Joon Song ◽  
Vivek R. Nerurkar ◽  
Naruya Saitou ◽  
Aristides Lazo ◽  
James R. Blakeslee ◽  
...  

Author(s):  
Syun-suke Kadoya ◽  
Hiroyuki Katayama ◽  
Daisuke Sano

Abstract Purpose of Review Major waterborne viruses comprise numerous variants rather than only a master sequence and form a genetically diverse population. High genetic diversity is advantageous for adaptation to environmental changes because the highly diverse population likely includes variants resistant to an adverse effect. Disinfection is a broadly employed tool to inactivate pathogens, but due to virus evolvability, waterborne viruses may not be inactivated sufficiently in currently applied disinfection conditions. Here, by focusing on virus population genetics, we explore possibility and factor of emergence of disinfection sensitivity change. Recent Findings To test whether virus population obtains disinfection resistance, the evolutionary experiment developed in the field of population genetics has been applied, indicating the change in disinfection sensitivity. It has been also confirmed that the sensitivity of environmental strains is lower than that of laboratory strains. In some of these studies, genetic diversity within a population less sensitive to disinfection is higher. Researches in virus population genetics have shown the contribution of intra-population genetic diversity to virus population phenotype, so disinfection sensitivity change may attribute to the genetic diversity. Summary The research elucidating a relationship between virus evolution and disinfection has only recently begun, but significant information about the relationship has been accumulated. To develop an effective disinfection strategy for the control of waterborne virus spread, we need to clarify whether disinfection practice truly affects virus outbreaks by refining both laboratory and field experiments related to virus evolution in the disinfection-exerted environment.


Author(s):  
Eugene V. Koonin ◽  
Mart Krupovic ◽  
Vadim I. Agol

Fifty years ago, David Baltimore published a brief conceptual paper delineating the classification of viruses by the routes of genome expression. The six “Baltimore classes” of viruses, with a subsequently added 7th class, became the conceptual framework for the development of virology during the next five decades.


2018 ◽  
Vol 17 (5) ◽  
pp. 321-328 ◽  
Author(s):  
Peter Simmonds ◽  
Pakorn Aiewsakun ◽  
Aris Katzourakis

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Yushen Du ◽  
Tian-Hao Zhang ◽  
Lei Dai ◽  
Xiaojuan Zheng ◽  
Aleksandr M. Gorin ◽  
...  

ABSTRACT Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.


Sign in / Sign up

Export Citation Format

Share Document