Structure and function of naturally evolved de novo proteins

2021 ◽  
Vol 68 ◽  
pp. 175-183 ◽  
Author(s):  
Erich Bornberg-Bauer ◽  
Klara Hlouchova ◽  
Andreas Lange
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huihui Li ◽  
Mingzhe Xie ◽  
Yan Wang ◽  
Ludong Yang ◽  
Zhi Xie ◽  
...  

AbstractriboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs; a manually curated collection of experimentally verified translated circRNAs; an evaluation of cross-species conservation of translatable circRNAs; a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function; and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com.


2005 ◽  
Vol 5 (5) ◽  
pp. 1169-1169
Author(s):  
Stuart M. Flechner ◽  
Caroline M. Lanigan ◽  
Daniel R. Salomon ◽  
James T. Burke ◽  
Kim Solez

2018 ◽  
Vol 54 (34) ◽  
pp. 4356-4359 ◽  
Author(s):  
Lu-Lu Yin ◽  
Hong Yuan ◽  
Ke-Jie Du ◽  
Bo He ◽  
Shu-Qin Gao ◽  
...  

The V21C/V66C/F46S myoglobin mutant, with a de novo designed intramolecular disulfide bond resembling that in cytoglobin without structural evidence, exhibits a dehalogenation activity exceeding that of a native dehaloperoxidase.


2010 ◽  
Vol 192 (11) ◽  
pp. 2670-2681 ◽  
Author(s):  
Jie Li ◽  
Jingfang Liu ◽  
Ligang Zhou ◽  
Huadong Pei ◽  
Jian Zhou ◽  
...  

ABSTRACT Primase, encoded by dnaG in bacteria, is a specialized DNA-dependent RNA polymerase that synthesizes RNA primers de novo for elongation by DNA polymerase. Genome sequence analysis has revealed two distantly related dnaG genes, TtdnaG and TtdnaG 2, in the thermophilic bacterium Thermoanaerobacter tengcongensis. Both TtDnaG (600 amino acids) and TtDnaG2 (358 amino acids) exhibit primase activities in vitro at a wide range of temperatures. Interestingly, the template recognition specificities of these two primases are quite distinctive. When trinucleotide-specific templates were tested, TtDnaG initiated RNA primer synthesis efficiently only on templates containing the trinucleotide 5′-CCC-3′, not on the other 63 possible trinucleotides. When the 5′-CCC-3′ sequence was flanked by additional cytosines or guanines, the initiation efficiency of TtDnaG increased remarkably. Significantly, TtDnaG could specifically and efficiently initiate RNA primer synthesis on a limited set of tetranucleotides composed entirely of cytosines and guanines, indicating that TtDnaG initiated RNA primer synthesis more preferably on GC-containing tetranucleotides. In contrast, it seemed that TtDnaG2 had no specific initiation nucleotides, as it could efficiently initiate RNA primer synthesis on all templates tested. The DNA binding affinity of TtDnaG2 was usually 10-fold higher than that of TtDnaG, which might correlate with its high activity but low template specificity. These distinct priming activities and specificities of TtDnaG and TtDnaG2 might shed new light on the diversity in the structure and function of the primases.


2013 ◽  
Vol 24 (18) ◽  
pp. 2943-2953 ◽  
Author(s):  
Mathieu D. Jacob ◽  
Timothy E. Audas ◽  
James Uniacke ◽  
Laura Trinkle-Mulcahy ◽  
Stephen Lee

The nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA). At the heart of this process is the de novo formation of a large subnucleolar structure, termed the detention center (DC). The DC is a spatially and dynamically distinct region, characterized by an 8-anilino-1-naphthalenesulfonate–positive hydrophobic signature. Its formation is accompanied by redistribution of nucleolar factors and arrest in ribosomal biogenesis. Silencing of regulatory IGS lncRNA prevents the creation of this structure and allows the nucleolus to retain its tripartite organization and transcriptional activity. Signal termination causes a decrease in IGS transcript levels and a return to the active nucleolar conformation. We propose that the induction of IGS lncRNA by environmental signals operates as a molecular switch that regulates the structure and function of the nucleolus.


Sign in / Sign up

Export Citation Format

Share Document