scholarly journals Vertical climate zones in Biga peninsula: The impact of climate change and air pollution on forests

2011 ◽  
Vol 19 ◽  
pp. 797-810 ◽  
Author(s):  
M. Dogan Kantarc
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


2021 ◽  
Vol 905 (1) ◽  
pp. 012102
Author(s):  
J A Munib

Abstract Wood waste can be found easily around us. It is usually used as household fuel resulting burning smoke that pollutes the air and reduces oxygen intake, later it would have a contribution to climate change. As alternative, to reduce air pollution due to wood waste combustion, it can be use as part of media artwork. This study used action research to create mixed-media artwork by utilizing the wood waste to reduce wood waste from industry. The results of this study are expected to help maintain eco-friendly industry and reduce the impact of climate change.


2021 ◽  
Author(s):  
Gregory J. Hakim ◽  
Jérôme Patoux

The second edition of this concise, affordable textbook is ideal for curious undergraduate majors and non-majors taking a first course in meteorology. The first two chapters introduce readers to the main concepts and tools used to analyze weather patterns. Chapters 3-8 provide a foundational understanding of the fundamental processes taking place in the atmosphere, and in Chapters 9-12 these physical concepts are applied to specific weather phenomena. Weather concepts are then used in Chapters 13-15 to explain weather forecasting, air pollution, and the impact of climate change on weather. Key concepts are illustrated through a running case study of a single mid-latitude cyclone, providing students with an opportunity to progressively develop their understanding of weather phenomena with a familiar example approached from multiple perspectives. This edition includes expanded and updated coverage of precipitation types and formation, satellite and radar technology, tornadoes, and more. It also features thought-provoking end-of-chapter review questions, new visual analysis exercises, an expanded test bank and nearly 100 new figures.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Sign in / Sign up

Export Citation Format

Share Document