Cutting wound ethylene production does not limit the vase life of Acacia holosericea

2016 ◽  
Vol 212 ◽  
pp. 35-48 ◽  
Author(s):  
Nor Mayati Che Husin ◽  
Jiping Liu ◽  
Daryl C. Joyce ◽  
Donald E. Irving
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 995
Author(s):  
Mohammad Darvish ◽  
Habib Shirzad ◽  
Mohammadreza Asghari ◽  
Parviz Noruzi ◽  
Abolfazl Alirezalu ◽  
...  

Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.


1999 ◽  
Vol 39 (7) ◽  
pp. 911 ◽  
Author(s):  
A. J. Macnish ◽  
P. J. Hofman ◽  
D. C. Joyce ◽  
D. H. Simons

Summary. Treatment of cut flowering Boronia heterophylla (red boronia) stems with 10 L ethylene/L for 72 h at 20°C induced flower senescence and abscission, and thereby reduced stem fresh weight and vase life. Pre-treatment with 1-methylcyclopropene (1-MCP) reduced these ethylene effects. Treatment of B. heterophylla with 10 L ethylene/L for a shorter 12 h period at 20°C did not affect vase life. Rates of endogenous ethylene production by B. heterophylla flowers increased in association with wilting during flower senescence.


2002 ◽  
Vol 42 (5) ◽  
pp. 637
Author(s):  
K.-L. Huang ◽  
L.-J. Liao ◽  
R.-S. Shen ◽  
W.-S. Chen ◽  
Y.-H. Lin

Continuous postharvest treatment of cut rose flowers (Rosa hybrida L. cv. Diana) with maleic acid hydrazide (1.2-dihydro-3,6-pyridazinedione, MH) at 560.5 8-hydroxyquinoline sulfate (HQS) at 388.4 HQS, MH + HQS or sucrose + HQS treatments. The longevity of flowers in MH + sucrose in combination with HQS was extended for 18 days after vase treatments, whereas the longevity of cut flowers was only 4, 6 and 8 days for HQS, MH + HQS and sucrose + HQS, respectively. Cut roses treated with MH + sucrose + HQS in vase solution exhibited greater water uptake and less water loss than those in HQS. The concentrations of various sugars in petals were highest in the sucrose + HQS treatment, and MH + sucrose + HQS > MH + HQS > HQS. Ethylene production was significantly lower in sucrose + HQS or MH + sucrose + HQS treatments in comparison to MH + HQS, or HQS.


2001 ◽  
Vol 41 (8) ◽  
pp. 1227 ◽  
Author(s):  
Wei-Ren Su ◽  
Kuang-Liang Huang ◽  
Ping-Shun Chang ◽  
Wen-Shaw Chen

Pulsing with gibberellic acid followed by continuous sucrose treatment enhanced flower longevity and flower bud opening in cut Polianthes tuberosa L. cv. Double. Pulsing with gibberellic acid at 10 or 20 mg/L plus 8-hydroxyquinoline sulfate (200 mg/L) for 24 h followed by continuous sucrose treatments (4 or 8%) plus 8-hydroxyquinoline sulfate extended the vase life and significantly promoted flower bud opening as compared with the 8-hydroxyquinoline sulfate controls. A pulse with a higher concentration of gibberellic acid (50 mg/L) followed by sucrose solutions did not increase vase life or enhance flower bud opening greater than those pulsed with gibberellic acid at 10 or 20 mg/L followed by 8-hydroxyquinoline sulfate. A gibberellic acid (10, 20 or 50 mg/L) pulse followed by 8-hydroxyquinoline sulfate holding solution had little effect on longevity and flower bud opening in comparison to 8-hydroxyquinoline sulfate controls. Similarly, continuous sucrose treatment at 4 or 8% without a gibberellic acid-pulsed treatment also showed little effect on vase life and flower bud opening. Cut P. tuberosa treated with a gibberellic acid pulse followed by 8-hydroxyquinoline sulfate produced more ethylene than those treated with 8-hydroxyquinoline sulfate alone. Ethylene production from flowers pulsed with gibberellic acid followed by sucrose was low when compared with controls or those pulsed with gibberellic acid alone. Cut stems continuously placed in solutions containing sucrose produced less ethylene than those without sucrose. It is suggested that a gibberellic acid pulse at 10 mg/L followed by continuous sucrose treatment at 4% be recommended to growers for extending the vase life and enhancing flower bud opening in cut P. tuberosa.


2005 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Veres ◽  
E. Kis ◽  
E. Tóth ◽  
Á. Tóth ◽  
L. Heszky

Transgenic carnations were produced with an apple derived antisense ACC-synthase cDNA. Transgenic carnation regenerants were potted in glasshouse. All transformed plants showed normal growth and were true-to-type. Ethylene production — measured at full opening stage — lowered by 30-60 %, no plant with 100 % decrease was identified. The vase-life has been observed for 5 years. 38 % of the transformant carnations showed a higher a relative value in days by more than 2 days to 6 days. Twenty six plants were found exhibiting the most marked alterations in the tested trait. In these plants ethylene production decreased by 37-67 %, they have longer vase-life (by 4 days or more). Since the fragrance variety 'Bíbor' was the plant material for genetic modification of vase-life, this trait has been conserved after transformation in spite of the fact that the position of transgene integration cannot be directed.


HortScience ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 547-549 ◽  
Author(s):  
Kuang-Liang Huang ◽  
Wen-Shaw Chen

An experiment was conducted to measure the effects of pulse treatments of BA, sucrose, and BA before, after, or with sucrose, on the vase life of cut Eustoma flowers. A BA pulse at 50 mg·L-1 before 4% sucrose promoted the longevity of cut Eustoma flowers better than other treatments. Simultaneously, sucrose, glucose, and mannose concentrations in flowers during vase periods were maintained at higher levels in double pulse treatments than in the single pulses. Ethylene production in flowers 2 days after vase treatment was highest in the BA-treated flowers; intermediate in flowers pulsed with BA before, after, or with sucrose; and lowest in sucrose-treated flowers. Although a BA pulse increased ethylene production over that of controls, it inhibited senescence in cut Eustoma flowers. Respiration in flowers pulse-treated with sucrose or with BA before, after, or with sucrose, was significantly higher than that in controls. Results suggest that the vase life of cut Eustoma flowers is improved by either BA or sucrose in vase solution and especially when BA was pulsed before the sucrose pulse. Chemical name used: N6-benzyladenine (BA).


1995 ◽  
Author(s):  
William Woodson ◽  
Shimon Mayak ◽  
Haim Rabinowitch

The senescence of carnation (Dianthus caryophyllus L.) flowers is associated with increased production of the phytohormone ethylene, which in turn serves to initiate and regulate the processes involved in programmed petal death. We investigated the regulation of ethylene production and petal senescence in carnation. Several carnation genotypes were identified that exhibited extended vase-life in comparison to flowers from typical commercial cultivars. The capacity of these genotypes to produce ethylene during postharvest vase-life and to respond to exogenous ethylene was investigated. Several genotypes, represented by 'Sandrosa' and 87-37G produced little ethylene durig their postharvest vase-life and as a result failed to exhibit the symptoms (in-rolling and wilting) typical of flowers producing elevated levels of ethylene. These genotypes were further separated by their capacity to respond to exogenous ethylene by both increased ethylene synthesis and premature petal senescence. In one case a genotype (799) was identified that was not capable of responding to exogenous ethylene by either increased ethylene production or premature petal senescence. The regulation of ethylene production during petal senescence was investigated both at the enzyme and gene levels. A full length cDNA was identified for the petal senescence-related ACC synthase gene. Utilizing this, and other ethylene biosynthetic pathway cDNA probes, an increase in both ACC synthase and ACC oxidase mRNAs were detected following ethylene treatment. An increase in ACC oxidase mRNA and enzyme activity was detected within 2-3 h following ethylene treatment, indicating the expression of this gene is an early response to ethylene. An investigation into the expression of novel proteins during petal senescence revealed a number of polypeptides increased in abundance and possibly play a role in the regulation or biochemical processes of senescence. One polypeptide of 70 kDa was identified as being encoded by the previously characterized gene SR12 and possibly represents a b-galactosidase involved in the remobilization of carbohydrates during senescence.


2012 ◽  
Vol 7 (1) ◽  
pp. 14-18
Author(s):  
Mohsen Kazemi ◽  
Hanifeh Seyed Hajizadeh ◽  
M. Gholami ◽  
M. Asadi ◽  
S. Aghdasi

Sign in / Sign up

Export Citation Format

Share Document