Consecutive wet days may impede fruit quality of peach and nectarine and cause fruit drop

2021 ◽  
Vol 282 ◽  
pp. 110011
Author(s):  
Georgios Pantelidis ◽  
Theodoros Mavromatis ◽  
Pavlina Drogoudi
Keyword(s):  
1990 ◽  
Vol 115 (3) ◽  
pp. 390-394 ◽  
Author(s):  
Richard P. Marini ◽  
Ross E. Byers ◽  
Donald L. Sowers ◽  
Rodney W. Young

Five apple (Malus domestica Borkh.) cultivars were treated with dicamba at concentrations of 0 to 200 mg·liter-1 during 3 years. Although the response varied with cultivar, dose, and year, dicamba always delayed fruit abscission. At similar concentrations, dicamba usually reduced fruit drop more than NAA, but less than fenoprop. Dicamba at 10 mg·liter-1 effectively delayed drop of `Delicious', whereas 20 to 30 mg·liter-1 was required for `Red Yorking', `Rome', `Winesap', and `Stayman'. Dicamba did not influence flesh firmness, soluble solids content, water core, or starch content at harvest or after storage. Chemical names used: naphthaleneacetic acid (NAA); 2-(2,4,5-trichlorophenoxy)propionic acid (fenoprop); 3,6dichloro-2-methoxybenzoic acid (dicamba).


2018 ◽  
Vol 98 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Michelle H. Arseneault ◽  
John A. Cline

Preharvest fruit drop (PFD) of apple (Malus domestica Borkh.) can cause significant losses resulting in up to 50% reduction in yield in some years. In a 2-yr study, ‘Honeycrisp’ trees were treated with six foliar treatments including 20 mg·L−1 1-naphthaleneacetic acid (NAA) 2 wk before anticipated harvest (WBAH), 125 mg·L−1 aminoethoxyvinylglycine hydrochloride (AVG) 4 WBAH, AVG plus NAA 2 WBAH, and repeat sprays of 200 mg·L−1 B, and 2000 mg·L−1 Mg applied 48–93 d after full bloom to evaluate their effect on PFD and fruit quality. Fruit drop associated with broken pedicels and physiological causes was monitored. During a year with ∼43% PFD on untreated control trees, AVG retained up to ∼35% and NAA retained up to ∼27% of the total fruit number, relative to the control trees. The combination of AVG plus NAA had similar PFD compared with AVG alone, while B and Mg were similar to the control. The proportion of PFD associated with broken pedicels was ∼5%. Aminoethoxyvinylglycine delayed starch degradation, ethylene evolution, and blush skin colour development of fruit. This study supports the use of AVG 4 WBAH and NAA 2 WBAH to manage ‘Honeycrisp’ PFD, which may offer economic advantages for growing quality apples. Foliar sprays of Mg or B failed to reduce PFD.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2056-2060 ◽  
Author(s):  
Duane W. Greene

AVG was applied as the ReTain formulation over three harvest seasons to determine the influence of time of application on drop control efficacy and its influence on fruit maturity of 'McIntosh' apples. Effective drop control was achieved through the commercial harvest season with application of AVG made from 1 to 6 weeks before the anticipated start of harvest for untreated fruit. Drop control extended beyond the normal harvest period when application was made either 2 weeks or 1 week before anticipated harvest. Application made between 6 and 4 weeks before anticipated harvest generally delayed parameters associated with ripening, such as softening, degradation of starch, and development of red color, more than applications made on later dates. While AVG consistently and effectively retarded abscission, the length of time it controlled drop varied from year to year, even when used on similar trees in the same block. Once applied, it required 10 to 14 days before AVG started to retard fruit abscission. AVG controlled drop linearly with increasing concentration. AVG was a superior drop control compound than NAA. Chemical names used: aminoethoxyvinylglycine (AVG), naphthaleneacetic acid (NAA).


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 495D-495
Author(s):  
Esmaeil Fallahi ◽  
Duane W. Greene

Effects of various combinations of NAA-800 and Retain on fruit retention, yield, and harvest and post-storage fruit quality of `Rome Beauty' and `Delicious' apples were studied over one to three seasons. Retain and NAA-800 often reduced preharvest fruit drop as compared to control. Fruit from trees that received Retain at 123.6 g a.i./ha, or 61.8 g a.i./ha plus NAA-800 showed lower starch degradation pattern (SDP) at harvest and higher firmness. Retain treated fruit had lower evolved ethylene and respiration. Application of Retain at 61.8 g a.i./ha plus NAA-800 delayed fruit maturity, and the effects on fruit quality at harvest was comparable to the effects of this chemical at 123.6 g. a.i./ha. However, after storage, fruits from trees receiving Retain at 123.6 g a.i./ha often were firmer. Split applications of NAA-800 did not show major improvement in delaying fruit maturity over a single application. Application of NAA-800 at 585 mL/ha tended to reduce fruit firmness and increase fruit SDP. These fruits some times tended to have better color. Results on fruit color varied from year to year.


2023 ◽  
Vol 83 ◽  
Author(s):  
M. Liaquat ◽  
I. Ali ◽  
S. Ahmad ◽  
A. M. Malik ◽  
H. M. Q. Ashraf ◽  
...  

Abstract ‘ Kinnow’ mandarin (Citrus nobilis L.× Citrus deliciosa T.) is an important marketable fruit of the world. It is mainstay of citrus industry in Pakistan, having great export potential. But out of total production of the country only 10% of the produce meets the international quality standard for export. Pre-harvest fruit drop and poor fruit quality could be associated with various issues including the plant nutrition. Most of the farmers do not pay attention to the supply of micro nutrients which are already deficient in the soil. Furthermore, their mobility within plants is also a question. Zinc (Zn) is amongst those micronutrients which affect the quality and postharvest life of the fruit and its deficiency in Pakistani soils is already reported by many researchers. Therefore, this study was carried out to evaluate the influence of pre-harvest applications of zinc sulfate (ZnSO4; 0, 0.4%, 0.6% or 0.8%) on pre-harvest fruit drop, yield and fruit quality of ‘Kinnow’ mandarin at harvest. The treatments were applied during the month of October i.e. 4 months prior to harvest. The applied Zn sprays had significant effect on yield and quality of the “Kinnow” fruit. Amongst different foliar applications of ZnSO4applied four months before harvest, 0.6% ZnSO4 significantly reduced pre-harvest fruit drop (10.08%) as compared to untreated control trees (46.45%). Similarly, the maximum number of fruits harvested per tree (627), fruit weight (192.9 g), juice percentage (42.2%), total soluble solids (9.5 °Brix), ascorbic acid content (35.5 mg 100 g-1) and sugar contents (17.4) were also found significantly higher with 0.6% ZnSO4 treatment as compared to rest of treatments and control. Foliar application of 0.6% ZnSO4 also significantly improved total antioxidants (TAO) and total phenolic contents (TPC) in fruit. In conclusion, foliar spray of ZnSO4 (0.6%) four months prior to harvest reduced pre-harvest fruit drop, increase yield with improved quality of ‘Kinnow’ mandarin fruit.


Sign in / Sign up

Export Citation Format

Share Document