A 15-year long assessment of cold hardiness of apricot flower buds and flowers during the blooming period

2021 ◽  
Vol 290 ◽  
pp. 110520
Author(s):  
László Szalay ◽  
József Bakos ◽  
Ágnes Tósaki ◽  
Belay Teweldemedhin Keleta ◽  
Veronika Froemel-Hajnal ◽  
...  
Keyword(s):  
2006 ◽  
pp. 141-146 ◽  
Author(s):  
S. Bartolini ◽  
G. Zanol ◽  
R. Viti
Keyword(s):  

1999 ◽  
Vol 124 (4) ◽  
pp. 341-346 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

Canes and flower buds of selected red raspberry cultivars (Rubus idaeus L. `Maurin Makea', `Muskoka', and `Ottawa') were sampled from a field (latitude, 61 °20'N; longitude, 24 °13'E) at 1-month intervals during Winter 1996-97 to study the interaction of dormancy and cold hardiness, hardiness retention, and rehardening capacity. One set of canes was subjected to dehardening (3 days) and two sets to dehardening + rehardening (3 and 7 days) treatments before cold hardiness determination. Maximum midwinter hardiness occurred in January, after breaking of endodormancy. Cold hardiness of canes and buds reached -28.6 to -37.2 °C and -24.2 to -31.6 °C, respectively. Throughout the winter, raspberry canes were hardier than buds. Endodormancy had a greater influence on dehardening and rehardening in buds than in canes, and cultivars differed in their response. Dehardening of `Maurin Makea' canes and buds, and `Muskoka' buds was slightly enhanced by breaking of dormancy, whereas dehardening in `Ottawa' was not affected by dormancy. Raspberry canes and buds could reharden even after dormancy release. Rehardening capacity was affected by the state of dormancy only in `Maurin Makea' buds. Changes in dormancy status failed to explain cultivar differences regarding dehardening and the capacity to reharden suggesting other factors may be involved.


Author(s):  
Masaya Ishikawa ◽  
Hiroyuki Ide ◽  
Tetsuya Tsujii ◽  
Timothy Stait-Gardner ◽  
Hikaru Kubo ◽  
...  

To explore diversity in cold hardiness mechanisms, high resolution magnetic resonance imaging (MRI) was used to visualize freezing behaviors in wintering flower buds of Daphne kamtschatica var. jezoensis, which have no bud scales surrounding well-developed florets. MRI images showed that anthers remained stably supercooled to -14 ∼ -21°C or lower whilst most other tissues froze by -7°C. Freezing of some anthers detected in MRI images at ∼ -21°C corresponded with numerous low temperature exotherms and also with the “all-or-nothing” type of anther injuries. In ovules/pistils, only embryo sacs remained supercooled at -7°C or lower, but slowly dehydrated during further cooling. Cryomicroscopic observation revealed ice formation in the cavities of calyx tubes and pistils but detected no ice in embryo sacs or in anthers. The distribution of ice nucleation activity in floral tissues corroborated the tissue freezing behaviors. Filaments likely work as the ice blocking barrier that prevents ice intrusion from extracellularly frozen calyx tubes to connecting unfrozen anthers. Unique freezing behaviors were demonstrated in Daphne flower buds: preferential freezing avoidance in male and female gametophytes and their surrounding tissues (by stable supercooling in anthers and by supercooling with slow dehydration in embryo sacs) whilst the remaining tissues tolerate extracellular freezing.


HortScience ◽  
1990 ◽  
Vol 25 (6) ◽  
pp. 624H-624
Author(s):  
Norman E. Pellett ◽  
Nancy Rowan ◽  
John Aleong

Flower buds of eight ecotypes representing three native North American azalea species being grown in Burlington, Vermont were compared for cold hardiness by laboratory freezing during the cold acclimation period for three years. Species were Rhododendron calendulaceum, R. prinophyllum, and R. viscosum. There was a high variation in the number of florets killed within an inflorescens in response to freezing temperatures. There was little difference in the cold hardiness of florets of R. Pinophyllum and R. calendulaceum florets, but R. viscosum florets were hardier. Some differences were noted in cold hardiness of florets of ecotypes, but these were not necessarily related to latitude of origin. Cold hardiness showed a relationship with the daily mean temperature of the three days preceding freezing tests.


2004 ◽  
Vol 129 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Rajeev Arora ◽  
Lisa J. Rowland ◽  
Elizabeth L. Ogden ◽  
Anik L. Dhanaraj ◽  
Calin O. Marian ◽  
...  

Loss of freeze tolerance, or deacclimation, is an integral part of winter survival in woody perennials because untimely mid-winter or spring thaws followed by a hard freeze can cause severe injury to dehardened tissues. This study was undertaken to investigate deacclimation kinetics, particularly the timing and speed, of five blueberry (Vaccinium L.) cultivars (`Bluecrop', `Weymouth', `Ozarkblue', `Tifblue', and `Legacy'), with different germplasm compositions and mid-winter bud hardiness levels, in response to an environmentally controlled temperature regime. Based upon bud cold hardiness evaluations in 2000 and 2001, `Tifblue', a Vaccinium ashei Reade cultivar, was one of the least hardy and the fastest to deacclimate; `Bluecrop', a predominantly V. corymbosum L. cultivar, was the most hardy and the slowest to deacclimate; and `Ozarkblue', a predominantly V. corymbosum cultivar but including southern species V. darrowi Camp. and V. ashei, was intermediate in speed of deacclimation. `Weymouth' (predominantly V. corymbosum) and `Legacy' (73.4% V. corymbosum and 25% V. darrowi) were slow to intermediate deacclimators. Deacclimation rates did not correlate strictly with mid-winter bud hardiness. Data suggest that the southern germplasm component V. ashei may be responsible for the observed faster deacclimation whereas both southern species, V. darrowi and V. ashei, may contribute genes for cold sensitivity. Strong positive correlations between stage of bud opening and bud cold hardiness existed in both years (r = 0.90 and 0.82 in 2000 and 2001 study, respectively). Previously identified major blueberry dehydrins, 65-, 60-, and 14-kDa, progressively decreased in their abundance during incremental dehardening in `Bluecrop', `Weymouth', and `Tifblue'. However, down-regulation of the 14-kDa dehydrin most closely mirrored the loss in cold hardiness during deacclimation, and, therefore, may be involved in regulation of bud dehardening. Because differences in deacclimation rate were clearly evident among the genotypes studied, rate of deacclimation of the flower buds of blueberry should be an important consideration in breeding to improve winter survival.


1980 ◽  
Vol 60 (1) ◽  
pp. 255-258 ◽  
Author(s):  
J. A. ROBBINS ◽  
C. C. DOUGHTY

Treatment of highbush blueberries during the blossom period with the surfactants X-77 and Surfactant WK caused the flowers and flower buds to be more susceptible to cold injury. Treated plants produced lighter yields of smaller berries than untreated plants. Treatments with Multifilm showed no effect.


Sign in / Sign up

Export Citation Format

Share Document