Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis

2008 ◽  
Vol 397 (1-3) ◽  
pp. 140-147 ◽  
Author(s):  
Chao Chen ◽  
Xiao-jian Zhang ◽  
Ling-xia Zhu ◽  
Jing Liu ◽  
Wen-jie He ◽  
...  
2013 ◽  
Vol 51 (31-33) ◽  
pp. 6288-6298 ◽  
Author(s):  
Jei-cheol Jeon ◽  
Chang-Hyun Jo ◽  
Ilhwan Choi ◽  
Soon-Buhm Kwon[a] Ennkyung Jang ◽  
Tae-Mun Hwang

2015 ◽  
Vol 17 (4) ◽  
pp. 682-691 ◽  

<div> <p>The effect of pre-ozonation on the formation of four aldehydes (i.e. formaldehyde, acetaldehyde, glyoxal, methyl glyoxal) and two ketones (i.e. pyruvic acid and glioxalic acid) at the Beheshti water treatment plant in Hamadan, Iran were studied. Water samples were taken from the treatment plant at different points of the treatment train during September-January, 2013. The variation of formaldehyde, acetaldehyde, glyoxal, methyl glyoxal, pyruvic acid, and acid glioxalic concentration within treatment process were monitored in September and January. The results indicated that formaldehyde and acetaldehyde were the most abundant aldehyde species in the raw water. After pre-ozonation all of the aldehydes and ketones reached the maximum concentration. On the contrary, results show that the coagulation-filtration process was beneficial to the removal of aldehydes and ketones. Also, the results indicated that the level of aldehydes was increased after post chlorination. The percent increase was 52.3, 34.6, 12.1, 26.8 and 38% for formaldehyde, acetaldehyde, glyoxal, methyl glyoxal and glyoxalic acid, respectively, in September. Therefore, final chlorination led to increase in the formation of aldehydes in the pre-ozonated water. Ketones were not detected in the post-chlorinated water. Moreover, there was no correlation between total organic carbon (TOC) and total aldehyde and total ketone in water samples.&nbsp;</p> </div> <p>&nbsp;</p>


2019 ◽  
Vol 19 (6) ◽  
pp. 1579-1586 ◽  
Author(s):  
Xiang-Ren Zhou ◽  
Yi-Li Lin ◽  
Tian-Yang Zhang ◽  
Bin Xu ◽  
Wen-Hai Chu ◽  
...  

Abstract The objective of this research was to study the occurrence and seasonal variations of disinfection by-products (DBPs), including traditional carbonaceous and emerging nitrogenous DBPs, in a full-scale drinking water treatment plant (DWTP) for nearly 2 years. The removal efficiencies of each DBP through the treatment processes were also investigated. This DWTP takes raw water from the Yangtze River in East China. The quality of the raw water used in this DWTP varied with different seasons. The results suggested that DBP concentrations of the finished water were higher in spring (82.33 ± 15.12 μg/L) and summer (117.29 ± 9.94 μg/L) with higher dissolved organic carbon (DOC) levels, but lower in autumn (41.10 ± 5.82 μg/L) and winter (78.47 ± 2.74 μg/L) with lower DOC levels. Due to the increase of bromide concentration in spring and winter, more toxic brominated DBPs increased obviously and took up a greater proportion. In this DWTP, DBP concentrations increased dramatically after pre-chlorination, especially in summer. It is noteworthy that the removal of DBPs during the subsequent treatment was more obvious in spring than in the other three seasons because the pH value is more beneficial to coagulation in spring.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 343-353 ◽  
Author(s):  
M.J. Rosa ◽  
T. Cecílio ◽  
M. Ribau Teixeira ◽  
M. Viriato ◽  
R. Coelho ◽  
...  

A monitoring programme of hazardous substances was implemented in Alcantarilha's water treatment plant (Algarve, Portugal) since 2002, in addition to the legally established monitoring of standard physical, chemical and microbiological parameters. The objective of this programme was to ensure the drinking water quality regarding the waterborne disease organisms Cryptosporidium, Giardia, Salmonella, Pseudomonas aeruginosa, enterovirus and cyanobacteria, and the potentially harmful chemicals aluminium, cyanotoxins, and disinfection by-products (THM) and their precursors (TOC, DOC, UV254 nm, SUVA). Most of these parameters are new and still not regulated by the Portuguese and the European legislation. Data presented in this study refer to the period of August 2002 to October 2003. Results show that, despite the seasonal variations of the raw water quality, concentrations of the hazardous substances in the supplied drinking water were far below the legal standards and the WHO's and EPA guideline values, demonstrating the high removal efficiencies of this treatment plant.


2006 ◽  
Vol 40 (19) ◽  
pp. 3621-3627 ◽  
Author(s):  
Mingquan Yan ◽  
Dongsheng Wang ◽  
Shijie You ◽  
Jiuhui Qu ◽  
Hongxiao Tang

2011 ◽  
Vol 243-249 ◽  
pp. 4835-4838 ◽  
Author(s):  
Di Guan ◽  
Zhen Zhang ◽  
Xing Li ◽  
Hui Liu

This research focused on the effect of water temperature and pH to coagulation efficiencies in low turbidity water. And the optimum dose of coagulant was determined. Simulated the treatment processing, the organic matters and turbidity removal capacities of polyaluminum chloride (PACl) were measured in parameters of turbidity, CODMn and UV254 with different experimental conditions. The results indicated that the PACl optimum doses were 28mg/L. By increasing water temperatures in the range of 4°C~18°C, the turbidity removal efficiency was gradually enhanced, while the organic loading removal performed few correlations to temperatures. And the effective pH range was 6.0~9.0, that appeared greater influence on turbidity removal than organic loadings.


2017 ◽  
Vol 5 (2) ◽  
pp. 168-179
Author(s):  
M. Farhaoui

Water management is a key pillar of sustainable development. Indeed, the rational use of water has become a condition for new investments in the water sector as many sectors. Optimizing the production of drinking water is one aspect. This optimization involves not only the choice of water resource use but also the management of by-products of the water treatment process to manage sustainably the exploited water resources. The city of Meknes is watered from two sources and a set of holes (14), the turbidity of water sources can vary depending on rainfall recorded in the region. A water treatment plant (600 l/s) was performed for the purification of water sources. Through this study, we focus on modeling of sludge volume produced by this plant.  The objective is to design a model for calculating the sludge volume from the actual data recorded in the plant. The model ca be used by the operator to predict the sludge volume and can be used also by the designers. The results of this study demonstrated that the volumes calculated from the model constructed considering the data recorded at the station perfectly match the volumes produced with a determination coefficient of 100%. The application of this model can not only provide the operator with an effective tool for managing of the station by-products but also to provide designers with a formula to prevent over/under design of structures. Therefore, these measures help to optimize the cost of production of drinking water and will play an important role in the sustainable development of water resources.


Sign in / Sign up

Export Citation Format

Share Document