Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead–zinc mine wasteland

2019 ◽  
Vol 21 (9) ◽  
pp. 849-856 ◽  
Author(s):  
Fangdong Zhan ◽  
Bo Li ◽  
Ming Jiang ◽  
Tianguo Li ◽  
Yongmei He ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 815 ◽  
Author(s):  
Rajni Dhalaria ◽  
Dinesh Kumar ◽  
Harsh Kumar ◽  
Eugenie Nepovimova ◽  
Kamil Kuča ◽  
...  

Heavy metal accumulation in plants is a severe environmental problem, rising at an expeditious rate. Heavy metals such as cadmium, arsenic, mercury and lead are known environmental pollutants that exert noxious effects on the morpho-physiological and biological attributes of a plant. Due to their mobile nature, they have become an extended part of the food chain and affect human health. Arbuscular mycorrhizal fungi ameliorate metal toxicity as they intensify the plant’s ability to tolerate metal stress. Mycorrhizal fungi have vesicles, which are analogous to fungal vacuoles and accumulate massive amount of heavy metals in them. With the help of a pervasive hyphal network, arbuscular mycorrhizal fungi help in the uptake of water and nutrients, thereby abating the use of chemical fertilizers on the plants. They also promote resistance parameters in the plants, secrete a glycoprotein named glomalin that reduces the metal uptake in plants by forming glycoprotein–metal complexes, and improve the quality of the soil. They also assist plants in phytoremediation by increasing the absorptive area, increase the antioxidant response, chelate heavy metals and stimulate genes for protein synthesis that reduce the damage caused by free radicals. The current manuscript focuses on the uptake of heavy metals, accumulation, and arbuscular mycorrhizal impact in ameliorating heavy metal stress in plants.


2017 ◽  
Vol 57 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Marieta Hristozkova ◽  
Maria Geneva ◽  
Ira Stancheva ◽  
Ivan Iliev ◽  
Concepción Azcón-Aguilar

AbstractPhysalis peruvianais one of the most promising tropical fruit plants because of its rapid growth, high yield, and nutritional quality. This study was designed to investigate plant development under heavy metal contamination (Cd, Pb) and responsiveness to arbuscular mycorrhizal fungi (AMF) colonization byRhizophagus clarumandClaroideoglomus claroideum. The antioxidant capacity, total lipid content and fatty acid profile in fruits, accumulation of Cd and Pb in different plant parts, plant dry biomass, and mycorrhizal colonization were determined. As a result of inoculation, a considerable reduction in Cd and Pb in the fruits was observed, compared with non-inoculated plants. The fruit number and dry weight increased in plants associated withC. claroideum.These plants also showed higher acid phosphatase activity, root protein accumulation and glomalin production. The type of antioxidant defense was AMF strain-dependent. Antioxidant activity and H2O2neutralization were enzymatic rather than non-enzymatic processes in the fruits ofC. claroideumplants compared with those forming an association withR. clarum. Mycorrhizal establishment changed the composition and concentration of fruits’ fatty acids. The ratio of unsaturated fatty acids was increased. With respect to the accumulation of bioactive compounds in golden berry the present findings are important for obtaining the optimum benefits of mycorrhizal association under unfavorable conditions.


Sign in / Sign up

Export Citation Format

Share Document